DISCRETE MATHEMATICS MCQ

Mrs.B.K.JALEESHA

PREFACE

This MCQ textbook is an initiative by the **Department of Mathematics**, St. Joseph's **College of Arts and Science for Women**, Hosur. It was thought the preparation of MCQ textbooks for Mathematics with the following objectives:

- 1. Uniformizing notations, and definitions
- 2. Focusing on important aspects of the syllabus that must be understood.
- 3. Collecting all relevant topics, problems, and hints prescribed in the syllabus.
- 4. Providing a complementary application idea to the freshers(staff) and students.

The book is prepared according to the syllabus of Periyar University of 2021 onwards syllabus, with a list of reputed books in the subject recommended for reference. The syllabus deals with two important topics in Mathematics, Logic, Normal forms, Counting (Combinatorics), Relations, and Boolean Algebra. A proper understanding of all the topics would go a long way in making the MCQ fully applicable. The authors have given a suggested list of practical problems to cover different types of topics. It is based on chapters of the book "Discrete Mathematics and its Applications" by Kenneth H. Rosen and J.p. Tremblay, R. Manohar.

SYLLABUS

ELECTIVE COURSE – I– DISCRETE MATHEMATICS

UNIT – I

Mathematical logic – Statements and Notations – Connectives – Negation – Conjunction – Disjunction – Statement formulas and truth table – Conditional and Bi conditional – Well formed formulas – Tautologies. Chapter 1(sections 1.1, 1.2.1 to 1.2.4, 1.2.6 to 1.2.8)

UNIT – II

Normal forms – Disjunctive Normal forms – Conjunctive Normal forms – Principal Disjunctive Normal forms – Principal conjunctive Normal forms - Ordering and uniqueness of normal forms – Validity using truth tables – Rules of inference. Chapter 1(sections 1.3.1 to 1.3.5, 1.4.1, 1.4.2)

UNIT – III

Relations and Ordering – Relations – Properties of Binary binary relations in a set – Partial Ordering – Partially ordered set: Representation and Associated terminology – Functions: Definition and Introduction – Composition of functions – Inverse functions – Natural numbers: Peano axioms and Mathematical induction. Chapter 2 (sections 2.3.1, 2.3.2, 2.3.8, 2.3.9, 2.4.1 to 2.4.3, 2.5.1)

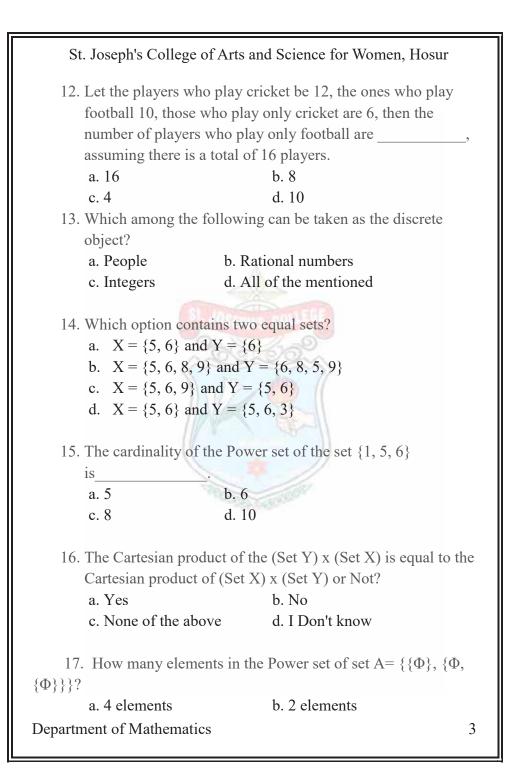
UNIT – IV

Algebraic systems: Definition and examples - Semigroups and Monoids: Definition and examples – Homomorphism of Semigroups and Monoids – Subsemigroups and Submonoids. Chapter 3 (sections 3.1.1, 3.2.1, 3.2.2 and 3.2.3)

UNIT – V

Lattices as partially ordered sets: Definition and examples – Some properties of Lattices – Sub lattices, Direct product and Homomorphism – Boolean algebra: Definition and examples – Sub Algebra, Direct product and Homomorphism. Chapter 4 (sections 4.1.1, 4.1.2, 4.1.4, 4.2.1, 4.2.2)

TEXT BOOK:


1. J.P. Tremblay, R. Manohar, Discrete Mathematical structure with Applications to computer science, Tata Mc Graw hill, 2001.

REFERENCE BOOKS:

1. Dr.M.K. Sen and Dr. B.C. Charraborthy, Introduction to Discrete Mathematics, Arunabha Sen Books & allied Pvt.Ltd, 8/1, Chintamoni Das Lane, Kolkatta – 700 009.

S	St. Joseph's College of Arts and Science for Women, Hosur	
	DISCRETE	MATHEMATICS – MCQ
1.	positive nor negati a. Set is Empty	e set contains an integer which is neither ive then the set x is b. Set is non-empty
	c. Set is Finite.	d. Set is both Non- empty and Finite.
2.	If $x \in N$ and x is p	prime, then x is set.
	a. Infinite set	b. Finite set
	c. Empty set	d. Not a set
3.	If x is a set and th and 2, then the set	e set contains the real number between 1 is
	a. Empty set	b. Finite set
	c. Infinite set	d. None of the mentioned
4.	Which of the follo	owing is a subset of set {1, 2, 3, 4}?
	a. {1, 2}	b. {1, 2, 3}
	c. {1}	d. All of the mentioned
5.	Convert the set x	in roster form if set x contains the positive
	prime number, wh	ich divides 72.
	a. {Ø}	b. {2, 3}
	c. {2, 3, 7}	d. {3, 5, 7}
6.	Power set of empty subset.	y or Null set has exactly
	a. One	b. Two
	c. Zero	d. Three
D		
Departi	ment of Mathematic	l l

 7. What is the Cartesian pr = {1, 2} and set B = {a, a. { (1, a), (1, b), (2, a) b. { (1, 1), (2, 2), (a, a) c. { (1, a), (2, a), (1, b) d. { (1, 1), (a, a), (2, a)), (b, b) }), (b, b) }), (2, b) }
 8. The members of the set and x < 100} is a. {0, 2, 4, 5, 9, 55, 46 b. {1, 4, 9, 16} c. {0, 1, 4, 9, 16, 25, 3 d. {0, 1, 4, 9, 25, 36, 4 	36, 49, 64, 81}
	sets {1, 2, 8, 9, 10, 5} and {1, 2, 6,
10, 12, 15} is the set	h (5 (12 15)
a. $\{1, 2, 10\}$	b. {5, 6, 12, 15}
c. {2, 5, 10, 9}	d. {1, 6, 12, 9, 8}
10. The difference of $\{1, 2, \dots, N\}$, 3, 6, 8} and {1, 2, 5, 6} is the set
a. {1, 3}	b. {5, 6, 8}
c. {3, 8}	d. {2, 6, 5}
0. (5, 6)	u. (2, 0, 5)
11. If n(A) = 20 and n(B) = B) is?	= 30 and $n(A \cup B) = 40$ then $n(A \cap$
a. 20	b. 30
c. 40	d. 10
•••••	↔• ± ♥

St. Joseph's College of Arts and Science for Women, Hosur c. 6 elements d. 5 elements 18. Mathematics can be broadly categorized into how many types? b. 2 types a. 3 types d. 4 types c. 5 types 19. Which of the following function is not a mathematics function? a. many to one b. one-to-many d. All of the mentioned c. one to one 20. Which of the following function is also referred to as an injective function? a. Many-to-one b. Onto d. None of the mentioned c. One-to-One 21. How many injections are defined from set A to set B if set A has 4 elements and set B has 5 elements? a. 24 b. 64 c. 144 d. 120 22. The function (gof) is , if the function f and g are onto function? a. Into function b. one to one function c. onto function d. one-to-many function 23. How many bytes are needed for encoding 2000 bits of data? a. 5 Byte b. 2 bytes c. 4 bytes d. 8 bytes Department of Mathematics 4

24. The cardinality of the set of even positive integers less than 20 is ?

a. 8	b. 10
c. 9	d. 12

25. If $X = \{2, 8, 12, 15, 16\}$ and $Y = \{8, 16, 15, 18, 9\}$ then union of X and Y is _____.

- a. {2, 8, 12, 15, 16}
- b. { 8, 16, 15 }
- c. $\{8, 16, 15, 18, 9\}$
- d. {2, 8, 9, 12, 15, 16, 18}

26. What is Floor function?

- a. It maps the real number to the greatest previous integer
- b. It maps the real number to the smallest previous integer
- c. It maps the real number to the smallest following integer
- d. None of the mentioned
- 27. What is Ceil function?
 - a. It maps the real number to the greatest previous integer
 - b. It maps the real number to the smallest previous integer
 - c. It maps the real number to the smallest following integer
 - d. None of the mentioned
- 28. What is the value of Floor(8.4) + Ceil(9.9)?

a. 18	b. 19
c. 20	d. 17

29. If a and b are two positive numbers that are less than one, then the maximum value of Floor(a+b) and Ceil(a+b) is?

- a. Floor(a+b) is 0 and Ceil(a+b) is 1.
- b. Floor(a+b) is 1 and Ceil(a+b) is 0.
- c. Floor(a+b) is 1 and Ceil(a+b) is 2.
- d. Floor(a+b) is 2 and Ceil(a+b) is 1

30. How many relations exist from set X to set Y if the set X and set Y has 7 and 8 elements?

a. 2 ⁵⁶	b. 2 ⁷²
c. 3 ⁵⁶	d. 56

31. The number of reflexive closures of the relation {(0,1), (1,1), (1,3), (2,1), (2,2), (3,0)} on the set {0, 1, 2, 3} is_____. a. 36 b. 8

d. 26

c. 6

32. The number of transitive closures exists in the relation $R = \{(0,1), (1,2), (2,2), (3,4), (5,3), (5,4)\}$ where $\{1, 2, 3, 4, 5\} \in A$ is ______.

a. $\{(0,1), (0,2), (1,2), (2,2), (3,4), (5,3), (5,4)\}$

b. $\{(0,0), (4,4), (5,5), (1,1), (2,2), (3,3)\}$

c. $\{(0,1), (1,2), (2,2), (3,4)\}$

d. $\{(0,1), (5,3), (5,4), (1,1), (2,2)\}$

33. Which statement is incorrect if X and Y are the two nonempty relations on the set S.

a. If X and Y are transitive, then the intersection of X and Y is also transitive.

- b. If X and Y are reflexive, then the intersection of X and Y is also reflexive.
- c. If X and Y are symmetric, then the union of X and Y is not symmetric.
- d. If X and Y are transitive, then the union of X and Y is not transitive.

34. Which option is the negation of the bits "1001011"?

a. 11011011 c. 0110100 b. 10110100 d. 1100100

35. What is the output of X (Ex-or) Y, if the bits of X is 001101 and the bits of Y is 100110?

- a. Output of X (Ex-or) Y is 101011
- b. Output of X (Ex-or) Y is 1101010
- c. Output of X (Ex-or) Y is 101000
- d. Output of X (Ex-or) Y is 0010101

36. Boolean algebra deals with how many values.

- a. It deals with only four discrete values.
- b. It deals with only five discrete values.
- c. It deals with only three discrete values.
- d. It deals with only two discrete values.
- 37. Which of the following Law of Boolean proofs the X.X=X?
 - a. Identity Law b. Double Complement Law
 - c. Complement Law
- d. Idempotent Law

38. According to the symmetric matrix, which of the following statement is correct?

a. $A = A^T$

- b. All the diagonal elements of a symmetric matrix are One.
- c. $A = -A^T$
- d. All the diagonal elements of a symmetric matrix are Zero.

39. Which of the following matrix having only one row and multiple columns?

a. Diagonal Matrix

b. Row Matrix

c. Column Matrix d. None of the mentioned

40. Which of the following matrix having only one column and multiple rows?

a. Diagonal Matrix

b. Row Matrix

c. Column Matrix d. None of the mentioned

41. Which of the following condition is correct if we want to add two matrices?

- a. Both rows and columns of both the matrices which we want to add are the same
- b. Columns of both the matrices which we want to add are equal
- c. Rows of both the matrices which we want to add are the same
- d. a number of the first matrix's rows should be equal to the number of the second matrix's column, which we want to add.

42. A+B = B+A is a true or false statement if the order of A matrix and B matrix is the same.

St. Joseph's College of Arts an	nd Science for Women, Hosur
a. False	b. True
c. Neither true nor false	d. 0
43. $XY = YX$ is a true or false	statement if the order of A matrix
and B matrix is the same.	
a. False	b. True
c. 1	d. 0'
44. Universal logic gate is	
a. OR	b. NOT
c. NAND	d. AND
	5 COLLEGE
45. In which year Maurice Karr	aughin introduced the Karnaugh
map?	See.
a. 1953	b. 1956
c. 1952	d. 1950
1PV	
46. Canonical forms for a boole	an expression has types.
a. Three types	b. Four types
c. Two types	d. Five types
47 The second Devilson also have	
47. The use of Boolean algebra	
a. in building the algebra	
b. in building logic symb	ols.
c. in circuit theory.	
d. in designing the digital	computers.
48. Boolean algebra deals with	how many values.
a. It deals with only four	discrete values.
Department of Mathematics	9

- b. It deals with only five discrete values.
- c. It deals with only three discrete values.
- d. It deals with only two discrete values.

49. Which search compares each element with the searching element till not found?

a. Merge search	b. Sequential Search
c. Binary search	d. none of the mentioned

50. If a user wants to sort the unsorted list of n elements, then the insertion sort starts with which element of the list.

- a. First element of the list
- b. the second element of the list
- c. the Third element of the list
- d. the Fourth element of the list
- 51. What is the complexity of the bubble sort algorithm?
 a. O (n²)
 b. O (n)
 c. O (log n)
 d. O(n log n)
- 52. What is the worst case of a linear search algorithm?
 - a. When the searching item is present in the middle of the list.
 - b. When the searching item is the last element in the list.
 - c. When the searching is not available in the list.
 - d. When the searching item is the last element in the list or is not present in the list.

53. Which algorithm uses the previous outputs for finding the new outputs?

- a. Dynamic Programming algorithms
- b. Divide and Conquer algorithm
- c. Brute Force algorithm
- d. None of them

54. Which option is correct for representing an algorithm?

- a. Pseudo codes
- b. Flow charts
- c. Statements in the common language
- d. All of them

55. Which case does not exist in complexity theory?

a. Average case	b. Null case
c. Best case	d. Worst Case

56. Which one of the following is a proposition?

a. How are you?
b. What time is it?
c. 4 + `x` = 5
d. India is in Europe.

57. What is the negation of the statement "Salman sent more than 100 text messages every day"?

a. Salman sent more than 200 text messages every

b. Salman sent less than 100 text messages but not every day.

c. Salman did not send more than 100 text messages every

day.

d. Salman did not send any text message every day.

58. Select the appropriate option after evaluating following four biconditionals are true or false.

1) 2 + 2 = 4 if and only if 1 + 1 = 2. 2) 1 + 1 = 2 if and only if 2 + 3 = 4. 3) 1 + 1 = 3 if and only if fishes can fly. 4) 0 > 1 if and only if 2 > 1.

a. Only 1 and 3 are True

b. Only option 3 and 4 are True

c. Option 1 is True

d. All options are false

59. What will be Truth values of the statement $p \leftrightarrow \neg p$ for the Truth values T, F of p?

a. T. F b. F. T

c. T, T d. F,F September 3018

60. What will be Truth values of the statement $(p \land q) \rightarrow (p \lor q)$ for the Truth values T,T,F,F of p and T,F,T,F of q?

a. T, F,T,F	b. F, T,F,T
c. T, T,T,T	d. F,F,F,F

61. If 'p': "You can use the wireless network in the airport," 'q': "You pay the daily fee," and 'r': "You are a subscriber to the service". Which is the right expression for the statement "To use the wireless network in the airport you must pay the daily fee unless you are a subscriber to the service".

a. $p \land r \rightarrow p$ b. $q \lor r \rightarrow p$

c. $p \land (q \lor r) d. p \land (q \land r)$

62. What is the negation of the statement "Sam is rich and happy"?

a. Sam is poor and unhappy.

b. Either Sam is poor or happy

c. Either Sam is poor or unhappy

St. Joseph's College of Arts and Science for Women, Hosur d. Sam is not rich and happy. 63. Let Q(x, y) denote the statement "y is the capital of x." What are these truth values? i) Q(Punjab, Chandigarh), ii) Q(India, New Delhi) iii) Q(Rajasthan, Shimla), iv) Q(Nepal, Kathmandu) a. T.F.T.F b. T.T.F.F d. T,T,T,T c. T.T.F,T 64. $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a a. Contingency b. Tautology c. Contradiction d. None of these 65. $(p \rightarrow q) \land (p \rightarrow r)$ is logically equivalent to a. $p \rightarrow (q \lor r)$ b. $p \rightarrow (q \land r)$ c. $p \land (q \rightarrow r)$ d. $p \land (q \rightarrow r)$ 66. $\neg p \leftrightarrow \neg q$ is logically equivalent to a. $p \rightarrow (q \lor r)$ b. $p \rightarrow (q \land r)$ c. $p \land (q \rightarrow r)$ d. $p \land \neg (q \rightarrow r)$ 67. $\neg p \leftrightarrow q$ is logically equivalent to $p \leftrightarrow \neg q$ a. $p \leftrightarrow \neg q`$ b. $`p \leftrightarrow q`$ c. $`p \land \neg q$ d. $`p \lor \neg q`$ 68. $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$ is a a. Contingency b. Contradiction c. Tautology d. All the above are true 69. If x and y are integers of opposite parity (one odd another even) the 5x+5y is a. Always Odd Department of Mathematics 13

b. Always Even

c. Odd for some values and even for other values

d. Can not be decided

70. ` \neg ($\forall x \in A$) $p(x)$ `is logical	lly equivalent to
a. ` $(\exists x \in A) \neg p(x)`$	b. $(\exists x \in \neg A)p(x)$
c. `($\forall x \in \neg A$)p(x)`	d. ` $(\forall x \in A) \neg p(x)$ `

71. Contrapositive of the statement "If you are honest, then you are respected."

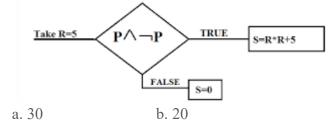
a. If You are honest then he is not respected.

b. If You are not respected than you are not honest.

c. If you are not honest then you are not respected.

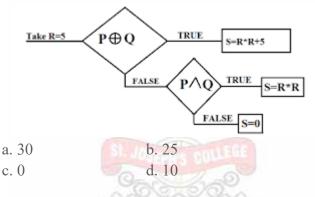
d. If you are respected then you are honest.

72. Contrapositive of the statement "If Sahir is a poet, then he is poor"


a. If Sahir is rich then he is not poet

b. If Sahir is not a poet then he is not poor

c. If Sahir is not poor then he is a poet


d. If Sahir is not a poet then he is not poor

73. Let P: Dogs can fly And consider the following flow chart of a computer program Then the value of S is

c. 0 d. 10

74. Let P: 5+10=15, Q: 5*10=50 And consider the following flow chart of a computer program Then the value of S is

75. What is the correct translation of the following statement into mathematical logic? "Some COVID 19 vaccines have complete the last trial are ready for production" where: COVID-19 vaccine, has completed the last trial, is ready for production.

a. $\exists x (t(x) \lor p(x))$	b. $\exists x (t(x) \rightarrow p(x))$
c. $\exists x (t(x) \land p(x))$	d. $\exists x (p(x) \rightarrow t(x))$

76. Consider the following statements over the set of integers P: k is even Q: `3k+1` is odd

Then which of the following is/are true

a. Only converse for the proposition is true

- b. Only inverse for the proposition is true
- c. Both converse and inverse for the proposition is true
- d. Neither converse nor inverse for the proposition is true

77. Which of the following statements is the contrapositive of the statement, "You win the game if you know the rules but are not over confident?"

a. If you lose the game then you don't know the rules or you are overconfident

b. A sufficient condition that you win the game is that you know the rules or you are not overconfident

c. If you don't know the rules or are overconfident you lose the game

d. If you know the rules and are overconfident then you win the game

78. In proving ` π ` as irrational, we begin with assumption ` $\sqrt{7}$ ` is rational in which type of proof?

- a. Direct proof b. Proof by Contradiction
- c. Vacuous proof d. Mathematical Induction

79. Which of the following can only be used in disproving the statements?

a. Direct proof b. Contrapositive proofs

c. Counter Example d. Mathematical Induction

80. Let P: We should be honest., Q: We should be dedicated., R: We should be overconfident. Then 'We should be honest or dedicated but not overconfident.' is best represented by?

a. $\neg P \lor \neg Q \lor R'$ b. $P \lor \neg Q \land R'$ c. $P \lor Q \land R'$ d. $P \lor Q \land \neg R$

81. What is the contrapositive of the conditional statement "I come to class whenever there is going to be a test"?

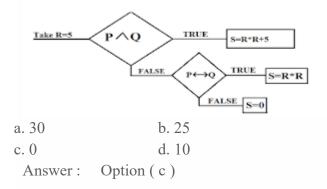
a. "If I come to class, then there will be a test."

b. "If I do not come to class, then there will not be a test."

c. "If there is not going to be a test, then I don't come to class."

d. "If there is going to be a test, then I don't come to class."

82. Let `a` and `b` are the legs of a right triangle with hypotenuse `c` A sufficient condition that a triangle `T` be a right angled triangle is that `a^2 + b^2 = c^2`.An equivalent statement is


a. If T is a right angled triangle then $a^2 + b^2 = c^2$

b. If $a^2 + b^2 = c^2$ then T is a right triangle.

c. $a^2 + b^2 \neq c^2$ Then T is not a right triangle.

d. T is a right triangle only if $a^2 + b^2 = c^2$

83. Let P: $R^2 - 5 = 10$ Q: $R^2 - 5 = 20$ And consider the following flow chart of a computer program Then the value of S is

84. Which one of the following is the most appropriate logical formula to represent the statement? "Students who know Mathematical , coding skills are placed".

The following notations are used: M(x): x is knowing the Mathematical skills C(x): x is knowing the Coding skills P(x): x is placed a. $\forall x (P(x) \rightarrow (M(x) \land C(x)))$ b. $\forall x((M(x) \land C(x)) \rightarrow P(x))$ c. $\exists x((M(x) \land C(x)) \rightarrow P(x))$ d. $\forall x((M(x) \lor C(x)) \rightarrow P(x))$

85. P and Q are two propositions. Which of the following logical expressions are equivalent?

 $\begin{array}{c} p \lor & Q \\ \sim (\sim P \land Q) \\ (P \land Q) \lor (P \land \sim Q) \lor (\sim P \land \sim Q) \\ (P \land Q) \lor (P \land \sim Q) \lor (\sim P \land Q) \\ a. \ Only \ I \ and \ II \\ c. \ Only \ I, \ II \ and \ IV \\ \end{array}$ $\begin{array}{c} b. \ Only \ I, \ II \ and \ III \\ d. \ All \ of \ I, \ II, \ III \ and \ IV \\ \end{array}$

86. Which of the following statement is a proposition?

a. Get me a glass of milkshake.

b. God bless you!

c. What is the time now?

d. The only odd prime number is 2.

87. Which of the following option is true?

a. If the Sun is a planet, elephants will fly

b. 3 + 2 = 8 if 5 - 2 = 7

c. 1 > 3 and 3 is a positive integer.

d. -2>3 Or 3 is a negative integer.

88. What is the value of x after this statement, assuming the initial value of x is 5?

	'If x equals to one then $x=x+2$ else $x=0$ '.
a. 1	b. 3
c. 0	d. 2

89. Let P: I am in Bangalore.; Q: I love cricket.; then $q \rightarrow p(q)$ implies p) is?

- a. If I love cricket then I am in Bangalore.
- b. If I am in Bangalore then I love cricket.
- c. I am not in Bangalore.
- d. I love cricket.

90. Let P: If Sahil bowls, Saurabh hits a century.; Q: If Raju bowls, Sahil gets out on first ball. Now if P is true and Q is false then which of the following can be true?

- a. Raju bowled and Sahil got out on first ball.
- b. Raju did not bowl.
- c. Sahil bowled and Saurabh hits a century.
- d. Sahil bowled and Saurabh got out.

91. Let P: I am in Delhi.; Q: Delhi is clean.; then $q \wedge p(q \text{ and } p)$ is?

a. Delhi is clean and I am in Delhi.

b. Delhi is not clean or I am in Delhi.

c. I am in Delhi and Delhi is not clean.

d. Delhi is clean but I am in Mumbai.

92. Let P: This is a great website, Q: You should not come back here. Then 'This is a great website and you should come back here.' Department of Mathematics

is best represented by?

a. ~P V ~Q	b. P ∧ ~Q
c. P V Q	d. $P \land Q$

93. Let P: We should be honest., Q: We should be dedicated., R: We should be overconfident. Then 'We should be honest or dedicated but not overconfident.' is best represented by?

a. ~P V ~Q V R	b. P $\land \sim Q \land R$
c. P V Q \wedge R	d. P V Q $\wedge \sim R$

94. What is the domain of a function?

a. the maximal set of numbers for which a function is definedb. the maximal set of numbers which a function can take valuesc. it is a set of natural numbers for which a function is defined

d. none of the mentioned

95. What is domain of function f(x)= x^{1/2}?
a. (2, ∞)
b. (-∞, 1)
c. [0, ∞)
d. None of the mentioned

96. What is the range of a function?

- a. the maximal set of numbers for which a function is defined
- b. the maximal set of numbers which a function can take values
- c. it is set of natural numbers for which a function is defined
- d. none of the mentioned

97. What is domain of function $f(x) = x^{-1}$ for it to be defined everywhere on domain?

a. $(2, \infty)$ b. $(-\infty, \infty) - \{0\}$

St. Joseph's College of Arts and Science for Women, Hosur		
c. [0, ∞)	d. None of the mentioned	
98. The range of function	$f(x) = \sin(x)$ is $(-\infty, \infty)$.	
a. True	b. False	
c. 1	d. neither true nor false.	
99 .Codomain is the subs	et of range.	
a. True	b. False	
c. 1	d. neither true nor false.	
100. What is range of fun	function $f(x) = x^{-1}$ which is defined	
everywhere on its domain?		
a. (-∞, ∞)	b. $(-\infty, \infty) - \{0\}$	
c. $[0, \infty)$	d. None of the mentioned	
101. If $f(x) = 2^x$ then range	ge of the function is?	
a. $(-\infty, \infty)$	b. $(-\infty, \infty) - \{0\}$	
c. $(0, \infty)$	d. None of the mentioned	
102. If $f(x) = x^2 + 4$ then	range of $f(x)$ is given by?	
	b. $(-\infty, \infty) - \{0\}$	
c. $(0, \infty)$	d. None of the mentioned	
103. Let $f(x)=\sin^2(x) + \log(x)$ then domain of $f(x)$ is $(-\infty, \infty)$.		
a. True	b. False	
c . 1	d. 0 and 1	
104. A is an ordered collection of objets.		
a. relation	b. function	
c. proposition	d. set	
Department of Mathematics		21

105. Mathematical _____ establishes whether an ordinary result involving natural numbers is valid?

a. Inflationb. Inductionc. Intuitiond. Inhibition

106. P (n) is _____ for $n = n_0$?a. Trueb. Falsec. Not predictabled. None of the above

107. If P (k) is true for n = k then -?

- a. P(K+1) must also be true
- b. P (n) is true for all $n \ge n_0$
- c. Both a and b
- d. None of the above

108. In Inclusion-Exlusion Principle, if A and B are any two finite sets then -?

a. $n (A \cap B) = n (A) + n (B) - n (A \cap B)$ b. $n (A \cup B) = n (A) + n (B) - n (A \cup B)$ c. $n (A \cup B) = n (A) + n (B) - n (A \cap B)$ d. $n (A \cup B) = n (A) + n (B) + n (A \cap B)$

109. Binary relations R are defined as subsets of P x Q from a set P to Q if P and Q are _____ sets?

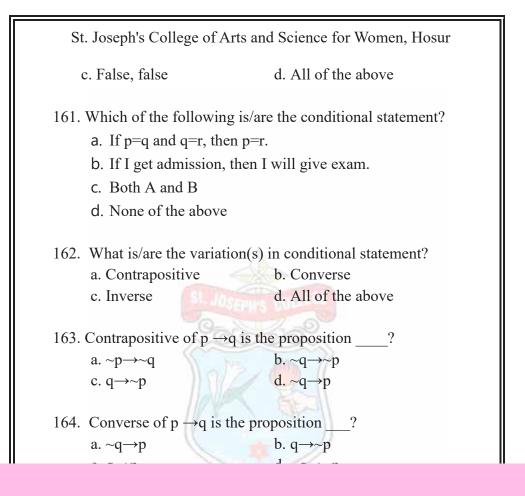
a. Emptyb. Non-emptyc. Half Emptyd. None

110. A and B are related by the constant R if -? a. $(a, b) \in R$ b. $R \subseteq P \times Q$

St. Joseph's College of Arts and Science for Women, Hosur		
	c. Both a and b	d. None of the above
111	. We say $R \subseteq P \ge P$ is	a relationship on P if P and Q are?
	a. Equivalent	b. Non-equivalent
	c. Equal	d. Non-equal
	1	1
		nain is all entries of all pairs that
relate s	some elements in P to	~
	a. First	b. Second
	c. Third	d. Last
11.	3. Domain of a relation	n is denoted by -?
	a. RAN (R)	b. DOM (R)
	c. DAM (R)	d. DOMA (R)
)) ()	12×00 ((
114.	In R, the range is con	nprised of all entries belonging to
orc	lered pairs whose elen	nents relate to some element in Q?
	a. First	b. Second
	c. Third	d. Last
		Carl and Car
115.	Range of a relation is	denoted by -?
	a. RANGE (R)	b. RAN (R)
	c. RANG (R)	d. R (R)
116.	In case of complement	nt of a relation -?
1100	-	$\in \mathbb{R}$. b. $\mathbb{R} = \{(a, b): \{a, a) \notin \mathbb{R}\}.$
		$\notin R$. d. R = {(a, b): {a, b) $\notin R$ }.
	(a, b)	(a, b) , $(a, b) \neq R$.
D		22
Depart	tment of Mathematics	23

St. Joseph's College of Arts and Science for Women, Hosur		
117. When every element of set A has a copy of itself, it is called the identity function, $f(a) = ?$		
Iuv	a. a $\forall A \in a$	b. $A \in A$
	c. $a \forall A \in A$	d. $a \forall a \in A$
	0. 4 V 11 C 11	u. u V u C M
118.	Identity function is denot	ed by the symbol -?
	a. ID	b. I
	c. U	d. T
119.	If f: X -> Y is a fu	anction, it is invertible?
	a. Dijective	b. Discretive
	c. Bijective	d. Bipolar
	- O ₅₋ 2	
120.	If f^-1 is a function from	, there is an inverse function for f?
	a. X to Y	b. X to X
	c. Y to X	d. Y to Y
121.	g [f(x)] is known as -?	
	a. gox b.	gof
	b. gfx d.	gxf
	1000	100000
122.	if f is $A \rightarrow B$ and g	g is B -> C, which means composition
of	f with g is a function from	
	a. $(gof)(y) = g[f(x)]$	b. $(gof)(x) = g[f(y)]$
	c. $(gof)(x) = g[x(x)]$	d. (gof) (x) = $g[f(x)]$
123.	It is necessary to in	order to find the composition of f and
g?		
	a. find the image of $f(x)$ u	under f before finding the image of $f(x)$
under	g	
Depar	tment of Mathematics	24

	St. Joseph's College of Arts a	nd Science for Women, Hosur
	b. find the image of x under	f before finding the image of $f(x)$
under	f	
	c. find the image of x under	g before finding the image of $f(x)$
under	0	
	•	f before finding the image of $f(x)$
under	g	
124.	The function (gof) (gof) is	if f and g are one-to-one?
	a. One-to-one	b. One-to-many
	c. Many-to-one	d. Many-to-many
125	Functions (gof) (gof) are on	nto if f and g are 2
123.	a. Into	b. Onto
	c. To	d. None
126.	There is no commutative p	roperty in composition, but
pı	operty is present consistently	?
	a. Associative	b. Identity
	c. Duplicative	d. None
127.	A predicate is a proposition	n containing, which is what's
de	ealt with in predicate logic?	
	a. Statics	b. Variables
	c. Numbers	d. None
128.	Predicates represent one or	more variables that are determined
01	n a specific?	
	a. Domain	b. Co-domain
	c. Both a and b	d. None of the above
D		25
Dena	rtment of Mathematics	25


St. Joseph's College of Arts and Science for Women, Hosur		
129. By, a predicate with variables can be made into a proposition?		
a. Authorizing a value to a variable	e b. Quantifying variable	
c. Both A and B	d. None of the above	
130. A quantifies a variable of a p	redicate?	
	uantity	
c. Quality d. Q	uantifier	
131. How many types of quantifier are the	ere in predicate logic?	
a. 2 b. 3		
c. 4	EGE	
132. Which of the following is/are the type logic?	be(s) of quantifier in predicate	
a. Existential b. U	niversal	
c. Both A and B d. N	one of the above	
133. In case of existential quantifer, the p	roposition $p(x)$ over the	
universe U is denoted by?		
a. $x \exists p(x)$ b. $p(x)$	x)∃x	
c. $p(x)x\exists$ d. $\exists x$	x p(x)	
134. $\exists x \ p(x) \text{ is read as } -?$		
a. There exists one value in the univ	verse of variable x such that	
p(x) is true		
b. There exists at least one value in the universe of variable x		
such that p(x) is false		
c. There exists at least one value in such that x is true	the universe of variable p(x)	
Department of Mathematics	26	

St. Joseph's College of A	rts and Science for Women, Hosur	
 d. There exists at least one value in the universe of variable x such that p(x) is true 		
135. Quantifier ∃ is called	quantifier?	
a. Existential	b. Universal	
c. Both A and B	d. None of the above	
136. An existential quantifier of proposition -?	can be written in which way(s) in a	
a. $(\exists x \in A)p(x)$	b. $\exists x \in A$ such that p (x)	
c. $(\exists x)p(x)$	d. All of the above	
137. In case of universal quant universe U is denoted a. x∀p(x)	b. $p(x), \exists \forall$	
c. $p(x), x \forall$	d. $\forall x, p(x)$	
138. $\forall x, p(x)$ is read as -?		
a. For every x∈U,p(x) i	sfalse b. For every $x \in p(x)$ is true	
c. For every $x \in U, p(x)$ i		
139. Quantifier ∀ is called	quantifier?	
a. Existential	b. Universal	
c. Both A and B	d. None of the above	
140. An universal quantifier c	an be written in which way(s) in a	
proposition -?		
a. $\forall x \in A, p(x)$	b. $p(x), \forall x \in A$	
c. $\forall x, p(x)$	d. All of the above	
141. Which of the following sta Department of Mathematics	atement is/are TRUE? 27	

St. Joseph's College of Arts and Science for Women, Hosur		
universally quantified prope	roposition arises from negating a	
142. What is the rule for the negation	n of quantified proposition?	
a. Dissociative law	b. Associative law	
c. Demorgan's law	d. Identity law	
143. Multiple quantifiers can be use variable?	d to quantify propositions with	
a. One	b. Two	
c. More than one	d. None	
 144 to arrange the multiple u quantifiers in a particular order meaningful? a. It is necessary 	niversal quantifiers or existential r in order to make the proposition b. It is not necessary	
c. Sometimes it is necessary	d. None of the above	
 145. It is impossible to change the oproposition containing que meaning of the proposition? a. Universal c. Both A and B 	-	
146. Proposition $\exists x \forall y p(x,y)$ mean		
a. There exists some x such th Department of Mathematics	at p (x, y) is false for every y. 28	

St. Joseph's College o	f Arts and Science for Women, Hosur		
b. There exists some x such that p (x, y) is true for every x.c. There exists some y such that p (x, y) is false for every y.d. There exists some x such that p (x, y) is true for every y.			
	147. If proposition P is true under all circumstances, it is a?		
a. Boolean	b. Tautology		
c. Contradiction	d. Binomial		
148. The truth table contain	is only T in the column in tautology?		
a. Initial	b. Middle		
c. Final	d. None		
St.	JOSEPH'S COLLEGE		
149 are statements	that are always false?		
a. Boolean	b. Negation		
c. Contradiction	d. Tautology		
150. Contingencies are statements that are based on the truth values of their variables?a. Trueb. False			
a. True	d. None of the above		
c. Both A and B	d. None of the above		
151. If p is and q is	_, then $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is true?		
a. True, false	b. False, true		
c. True, true	d. All of the above		
152. If p is and ~p is	, then p $\wedge \sim p$ is false?		
a. True, false	b. False, true		
c. Both A and B	d. None of the above		
153. If p is and q is	_, then $(p \rightarrow q) \rightarrow (p \land q)$ is true?		
	b. True, false		
Department of Mathematics			
Department of Wathematics	/		

St. Joseph's College of Arts and Science for Women, Hosur		٦
c. Both A and B Answer: c) Both A		
154. If p is and q is a. False, false c. Both A and B		
155. What is/are the meaning two statements p and a. If p then qc. Both A and B		
156. Conditional statement a. Negation c. Disjunction	is also known as -? b. Conjunction d. Implication	
157. Conditional statement	is denoted by -?	
a. →	b. ~	
c. ↔	d. None	
158. In implication $p \rightarrow q$, p	o is known as -?	
	b. Antecedent	
c. Both A and B	d. None of the above	
 159. In implication p→q, c a. Conclusion c. Both A and B 	q is known as -? b. Consequent d. None of the above	
160. If p is and q is		
a. True, true Department of Mathematics	b. False, true s 30	

St. Joseph's College of Arts and Science for Women, Hosur		
167. Biconditional statement is also known as -?		
a. Equivalance	b. Conjunction	
c. Disjunction	d. Implication	
167. Biconditional	statement is denoted by -?	
$a. \rightarrow$	b. ~	
$c. \leftrightarrow$	d. None	
	q is, then $p \leftrightarrow q$ is false?	
a. True, false	b. False, true	
c. Both A and	B d. None of the above	
•	(AND) by V (OR) by \wedge (AND), two formulas	
	ome of each other?	
a. Equivalent	b. Duals	
c. Equals	d. Same	
170. Which of the following statement(s) is/are TRUE?		
a. AND and OR are dual of each other		
	NOR are dual of each other	
	that any formula of the proposition holds true	
	oove	
	ositions have exactly the same truth values	
	cumstance, they are said to be?	
	equivalent b. Logical	
	d. Logically equivalent	
	npotent law(s)?	
	· · · · · · · · · · · · · · · · · · ·	
	b. $p \land p \cong p$	
	atics 32	

St. Joseph's College of Arts and Science for Women, Hosur c. Both A and B d. None of the above 173. What is associative law? a. $(p \lor q) \lor r \cong p \lor (q \lor r)$ b. $p \lor q \cong q \lor p$ c. $p \lor (q \land r) \cong (p \lor q) \land (p \lor r)$ d. $\neg \neg p \cong p$ 174. What is commutative law? a. $p \lor \neg p \cong T$ b. $\neg (p \lor q) \cong \neg p \land \neg q$ c. $p \lor q \cong q \lor p$ d. $p \lor (q \land r) \cong (p \lor q) \land (p \lor r)$ 175. What is distributive law? a. $p \lor (q \land r) \cong (p \lor q) \land (p \lor r)$ b. $\neg (p \lor q) \cong \neg p \land \neg q$ d. $p \vee F \cong p$ c. $\neg \neg p \cong p$ 176. What is/are identity law(s)? a. p V F \cong p b. $p \wedge T \cong p$ d. All of the above c. p∧F≅F 177. What is involution law? a. $\neg (p \lor q) \cong \neg p \land \neg q$ b. $p \lor \neg p \cong T$ d. None of the above c. $\neg \neg p \cong p$ 178. What is/are complement law(s)? a. p V \neg p \cong T b. p $\land \neg p \cong T$ d. None of the above c. Both A and B 179. What is/are demorgan's law(s)? a. $\neg (p \lor q) \cong \neg p \land \neg q$ b. $\neg (p \land q) \cong \neg p \lor \neg q$ c. Both A and B d. None of the above

St. Joseph's College of Arts and Science for Women, Hosur		
180 are declarative sentences that are true or false?		
a. Statements	b. Propositions	
c. Both A and B	d. None of the above	
181. Which of the following statement is/are proposition(s)?		
a. Narendra Modi is our current prime minister.		
b. Yesterday it was rainy day.		
c. a.a means a^2 .	2	
d. All of the above		
182. Which of the following statement is/are not proposition(s)?		
a. Pick up the bottle	b. What is your address?	
c. a^a=20	d. All of the above	
_	ed by lower case letters starting with	
_?	R-1	
a. P	b. U	
c. A	d. X	
184. Through logical connectiv	ves (operators), statements can be	
combined into a single sta	atement called a statement?	
a. Collabrative	b. Doubled	
c. Combined	d. Compound	
185. Which of the following is/are logical connective(s)?		
a. ~	b. Λ	
$c. \rightarrow$	d. All of the above	
186. Name of ~ is?		
a. Negation	b. Conjunction	
Department of Mathematics	34	
1	2.1	

St. Joseph's College of Arts and Science for Women, Hosur	
c. Disjunction	d. None of the above
187. Connective of ~ is?	
a. Not	b. And
c. Or	d. None
188. Name of ∧ is?	
a. Negation	b. Conjunction
c. Disjunction	d. Implication
189. Name of V is?	
a. Conditional	b. Biconditonal
c. Disjunction	d. Implication
190. Name of \rightarrow is/are -?	and the
a. Implication	b. Conditional
c. Both A and B	d. None of the above
191. Connective of \rightarrow is/are -?	
a. Implies	b. Ifthen
c. Both A and B	d. None of the above
192. Name of \leftrightarrow is/are -?	
a. Equivalence	b. Biconditional
c. Both A and B	d. None of the above
193. Connective of \leftrightarrow is -?	
a. If	b. Only if
c. If and only if	d. None

St. Joseph's College of Arts and Science for Women, Hosur		
194. A pigeonhole is occupied by more than one pigeon if n pigeonholes are occupied by or more pigeons?		
a. n	b. n+1	
c. n-1	d. None of the above	
195. There must be at least one pigeonhole occupied by k+1 or more pigeons if n pigeonholes are occupied by or more pigeons where k is a positive integer?		
a. k+1	b. n+1	
c. kn+1	d. kn-1	
196. There are various orders	of differences of $f(x)$ in a	
relationship between the independent variable x and the		
dependent variable $f(x)$		
a. Occurrence	b. Recurrence	
c. Deviant	d. Variable	
	be used interchangeably with a to	
refer to a recurrence rel		
a. Dividend Equation b. Divisional Equation		
c. Difference Equation	d. Data Equation	
198. It is defined as the differ	rence between highest and lowest	
subscripts to determine	the order of the recurrence relation or	
difference equation?		
a. f(x)	b. $a_r = y_k$	
c. Both A and B	d. None of the above	
199. Defining degree of a difference equation as the power of f		
(x) or $a_r = y_k$?		
a. Highest	b. Lowest	
Department of Mathematics	36	

c. Average d. Middle

200. Consider G a non-void set where every pair of ordered elements of G will have an element of G denoted by a * b. How many properties are true, when we can say that G is a binary group?
a. One
b. Two
c. Three
d. Four

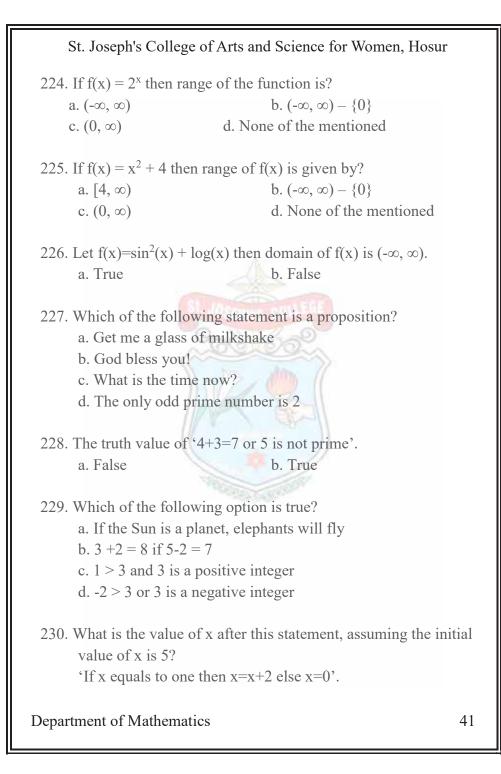
201. Consider G a non-void set where every pair of ordered elements of G will have an element of G denoted by a * b. If the following property/ies are true, then we can say that G is a binary group -

a. Associativityb. Identityc. Inversed. All of the above

202. Associative property on binary operation * states that -

- a. $a^{*}(b^{*}c) = (a^{*}b)^{*}c, \forall a, b, c \in G$
- b. $a^*e=e^*a=a, \forall a \in G$
- c. $a*b=b*a=e, \forall a, b \in G$
- d. None

203. Identity property on binary operation * states that -


- a. $a^{*}(b^{*}c) = (a^{*}b)^{*}c, \forall a, b, c \in G$
- b. $a^*e=e^*a=a, \forall a \in G$
- c. $a*b=b*a=e, \forall a, b \in G$
- d. None

204. Inverse property on binary operation * states that a. a*(b*c)=(a*b)*c, ∀ a,b,c ∈ G
b. a*e=e*a=a, ∀ a ∈ G
Department of Mathematics

St. Joseph's College of Arts and Science for Women, Hosur		
c. $a*b=b*a=e, \forall a, b \in G$		
d. None		
205. The group is called abelian if it has the property oflaw.		
a. Associative b. Identity		
c. Inverse d. Commutative		
206 identity element exists in a Group G (unique identity).		
a. One b. Two		
c. Three d. Four		
207. If a is unique in a group G, then b is unique in G so that		
(uniqueness if inverses).		
a. $ab = ba$ b. $ab = e$		
c. $ba = e$ d. $ab = ba = e$		
208. The Group G is defined as $\forall a \in G$.		
a. $(a^{-1})=a$ b. $(a)^{-1}=a$		
c. $(a^{-1})^{-1}=a$ d. $(a-1^{-1})^{-1}=a$		
209. As part of Group G, $, \forall a, b \in G$.		
a. $(a b)=b^{-1}a^{-1}$ b. $(a b^{-1})=ba^{-1}$		
c. $(a b^{-1})=b^{-1}a$ d. $(a b^{-1})=b^{-1}a^{-1}$		
210. It follows that the left and right cancellation laws apply to group		
G, which means -	-	
a. $ab = ac$ implies $b=c$ b. $ba=ca$ implies $b=c$		
c. Both A and B d. None of the above		
211 groups are those for which the set G is		
Department of Mathematics 38		

St. Joseph's College of Arts and Science for Women, Hosur		
a. Finite, finite	b. Infinite, infinite	
c. Both A and B	d. None of the above	
212. Counting the elements in t	he group G determines the of	
the group.		
a. Number	b. Elements	
c. Order	d. Pair	
213. Order of group G is denoted by -		
a. <g></g>	b. G	
c. G	d. *G	
at 105Ept	IS COLLEGE	
A	element in an order _ group, i.e., ({e}	
*).	1.2	
a. 1 c. 3	b. 2 d. 4	
215. There are two elements in	(POL	
a. Identity, Other	b. Identity, Identity	
c. Inverse, Inverse	d. Associative, Inverse	
	and the	
216. Three elements make up order 3, namely an element and		
two elements.		
a. Identity, Identity	b. Inverse, Associative	
c. Associative, Identity	d. Identity, Other	
217. What is the domain of a function?		
a. the maximal set of numbers for which a function is defined		
b. the maximal set of numbers which a function can take values		
c. it is a set of natural num	nbers for which a function is defined	
Department of Mathematics	39	

St. Joseph's College of Arts and Science for Women, Hosur			
d. none of the mer	d. none of the mentioned		
219 What is domain of	function $f(x) = x^{1/2}$		
218. What is domain of			
a. (2, ∞)	b. (-∞, 1)		
c. [0, ∞)	d. None of the mentioned		
219. What is the range of	219. What is the range of a function?		
a. the maximal set	of numbers for which a function is defined		
b. the maximal set	t of numbers which a function can take values		
	c. it is set of natural numbers for which a function is defined		
	d. none of the mentioned.		
	TOSEPH'S COLLEGE		
220. What is domain of	220. What is domain of function $f(x) = x^{-1}$ for it to be defined		
everywhere on do	everywhere on domain?		
a. (2, ∞)	b. $(-\infty, \infty) - \{0\}$		
c. [0, ∞)	d. None of the mentioned		
221. The range of functio	$n f(x) = sin(x) is (-\infty, \infty).$		
a. True	b. False		
	The second second		
222. Codomain is the sub	set of range.		
a. True	b. False		
223. What is range of function $f(x) = x^{-1}$ which is defined everywhere on its domain?			
a. (-∞, ∞)	b. $(-\infty, \infty) - \{0\}$		
c. $[0, \infty)$	d. None of the mentioned		

a. 1	b. 3
c. 0	d. 2

- 231. Let P: I am in Bangalore.; Q: I love cricket.; then q -> p(q implies p) is?
 - a. If I love cricket then I am in Bangalore
 - b. If I am in Bangalore then I love cricket
 - c. I am not in Bangalore
 - d. I love cricket

232. Let P: If Sahil bowls, Saurabh hits a century.; Q: If Raju bowls, Sahil gets out on first ball. Now if P is true and Q is false then which of the following can be true?

- a. Raju bowled and Sahil got out on first ball
- b. Raju did not bowled
- c. Sahil bowled and Saurabh hits a century
- d. Sahil bowled and Saurabh got out
- 232. The truth value '9 is prime then 3 is even'.a. Falseb. True
- 233. Let P: I am in Delhi.; Q: Delhi is clean.; then q ^ p(q and p) is? a. Delhi is clean and I am in Delhi
 - a. Delhi is clean and I am in Delhi
 - b. Delhi is not clean or I am in Delhi
 - c. I am in Delhi and Delhi is not clean
 - d. Delhi is clean but I am in Mumbai
 - 234. Let P: This is a great website, Q: You should not come back here. Then 'This is a great website and you should come back here.' is best represented by?

a. ~P V ~Q	b. P ∧ ~Q
c. P V Q	d. P \land Q

235. Let P: We should be honest., Q: We should be dedicated., R: We should be overconfident. Then 'We should be honest or dedicated but not overconfident.' is best represented by?
a. ~P V ~Q V R
b. P ∧ ~Q ∧ R
c. P V Q ∧ R
d. P V Q ∧ ~R

236. The Hasse Diagram provides a complete description of the _____ partial order.

- a. Associated b. Complimentary
- c. Supplementary d. Non-Supplementary
- 237. Hasse diagram is also called a. Ordered Diagram
 b. Unordered Diagram
 c. Partial Ordered Diagram
 d. Partial Unordered Diagram
- 238. Creating an equivalent Hasse diagram from a _____ graph of a relation on a set A is very straightforward.a. Undirectedb. Directed
 - c. Partial undirected d. Partial directed.

239. Instead of circles, Hasse diagrams have _____ that represent vertices.

a. Nodesb. Pointsc. Squaresd. Subpoints

240. Due to the _____ nature of partial orders, in Hasse diagrams, edges between vertices are deleted.

	1	
St. Joseph's College of Arts and Science for Women, Hosur		
a. Transitive	b. Reflexive	
c. Associative	d. Distributive	
241. Since partial orders are	_, we have aRc in the case of aRb,	
bRc.		
a. Transitive	b. Reflexive	
c. Distributive	d. Associative	
242. In Hasse diagrams, remove	the implied by the transitive	
-	lge from a to c while keeping the	
other two edges.		
a. Vertices	b. Edges	
c. Lines	d. Directed lines.	
12 10 10 10 10 10 10 10 10 10 10 10 10 10	200	
243. The vertex 'b' appears abov	e vertices 'a' if they are connected by	
an edge, e.g.,	e vornees a n mey are connected by	
a. aRa	b. aRb	
c. bRb	d. None	
0. 010	d. None	
244. In the Hasse diagram, the a	rrow may be from the edges.	
a. Replaced	b. Omitted	
c. Added	d. None of the above	
245. A subset of a partially ordered set A will be called an upper		
bound of B if for eve		
a. $y \le x$		
c. $y \leq R$	$d. x \leq R$	
246. When B is a subset of a partially ordered set A, an element z is		
referred to as a boun	•	
a. Upper	b. Lower	
Department of Mathematics	44	
1		

St. Joseph's College of Arts and Science for Women, Hosur			
	c. Side	d. Inner	
247.	247. In S, M is called an upper bound of A if it succeeds all elements		
	of A, i.e., if x in A N	I, then M is said to be an upper bound	
	of A.		
	a. Is equal to	b. Is less than	
	c. Is greater than	d. None of the above	
248.	(A) indicates an upper	r bound of A that precedes all other	
	upper bounds of A.		
	a. Sup	b. Inf	
	c. Sub	d. Super	
	Operation		
249.	Lower bounds for a subset	A of S are defined as elements m in S	
	preceding every element	in A, i.e., if, for every y in A,	
	a. m<=y	b. m>=y	
	c. m<=A	d. m<=S	
250.	A lower bound is called the	of A if it exceeds all lower	
	bounds of A.	- CON	
	a. Supremum	b. Infimum	
	c. Side Upper	d. Side Lower	
251.	251. Assume that L is a non-empty set closed only under two binary		
operations,, denoted by \wedge and \vee . It is called a lattice if L			
	has a, b, and c elements, where a, b, and c are the elements in		
	L.		
	a. Meet	b. Join	
	c. Both A and B	d. None of the above	
252	. Axioms that lattice L hold	ls are -	
Depart	ment of Mathematics	45	

St. Joseph's College of Arts and Science for Women, Hosur		
a. Commutative law	b. Associative law	
c. Absorption law	d. All of the above	
253. An expression's dual is the expression that can be obtained by		
$_$ \land and \lor . a. Mixing	b. Interchanging	
c. Adding	d. Removing	
5	5	
254. The following identities are	valid if L is a bounded lattice:	
a. a V 1 = 1	b. $a \wedge 1 = a$	
c. a V0=a	d. All of the above	
No. No.	lattice L is considered. It can be ttice of L if it itself is a lattice, i.e., $\land b \in L_1$ whenever $a \in L_1$ and $b \in$ b. Sub d. None	
256. Two lattices L_1 and L_2 are called isomorphic lattices if there is a from L_1 to L2.		
a. Dijection	b. Bijection	
c. Rejection	d. None	
 257. If any element a, b, or c of a lattice L satisfies the following distributive properties, it is called a distributive lattice: a. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) b. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) c. Both A and B d. None of the above 		
Department of Mathematics	46	
1		

258. ____ lattices are those that do not satisfy the above properties.
a. Non-distributive
b. Distributive
c. Associative
d. Non-associative

259. An upper bound I and a lower bound o define a bounded lattice L. Assume that a is an element if L. In L, a complementary element x is an element within an if _____. a. $a \lor x = I$ b. $a \land x = 0$ c. Both A and B d. None of the above

260. _____ are bounded and contain complements for each element.
 a. Complimented lattices
 b. Uncomplimented lattices
 c. Conceptional
 d. Unconceptional lattices

261. (L, b, c) is a modular lattice if $a \lor (b \land c) = (a \lor b) \land c$ whenever _____. a. b \leq c ______. b. a \leq b c. a < c ______. d. None

262. (L, Λ ,V) is the _____ of lattices, where L = L₁ x L₂ where the binary operations (join) and (meet) on L are such that for any (a₁,b₁) and (a₂,b₂) in L.

- c. Direct sum d. Indirect sum
- 263. Which of the following properties are satisfied by the relation R on the set S?

a. A reflexive function (R) returns xRx when $x \in S$.

St. Joseph's College of Arts a	nd Science for Women, Hosur	
b. There is an antisymmet	b. There is an antisymmetry in R, so if xRy and yRx, then $x =$	
у.		
	itive; if xRy and yRz, then xRz	
follows.		
d. All of the above		
264 relationships are ref	erred to as R.	
a. Ordered	b. Unordered	
c. Partially ordered	d. Partially unordered	
265. A partially ordered set () is a set with partial order		
combined with S.	S COLLEGE	
a. POSET	b. PASET	
c. PAOET	d. POS	
266. POSET is denoted by -	2	
a. (≤, S)	b. (S, ≤)	
c. (>=, S)	d. (S, >=)	
267 elements of A are those where $a \le c$ in A does not		
contain elements in c.		
a. Maximal	b. Minimal	
c. Both A and B	d. None of the above	
268. A element of A is a data structure in which the element		
in c in A cannot be changed.		
a. Maximal	b. Minimal	
c. Both A and B	d. None of the above	

St. Joseph's College of Arts and Science for Women, Hosur		
269. It is possible to have maximal element or minimal element.a. One, more than one		
b. Two, more than one		
	c. More than one, more than one	
d. More than one, Zero		
270. A pair of elements a and b	of set A is comparable if -	
a. $a \le b$	b. b \leq a	
c. Both A and B	d. None of the above	
271. In set A, two elements a and b cannot be compared even if neither		
a. a ≤ b	b. b \leq a	
c. Both A and B	d. None of the above	
272. When all elements in set A are comparable, it's called a .		
a. Linearly Ordered Set	b. Totally Ordered Set	
c. Both A and B	d. None of the above	
273. In Boolean algebra B, a Boolean expression is defined as -		
a. The elements of B are	•	
b. Boolean expressions are used to name variables.		
 c. If a₁ and a₂ are Boolean a₂ are Boolean express d. All of the above 	n expressions, then a_1 , $\vee a_2$ and $a_1 \wedge$ ions.	
274. Boolean expressions containing n distinct variables are normally		
referred to as Boolean		
a. Functions	b. Laws	
Department of Mathematics	49	

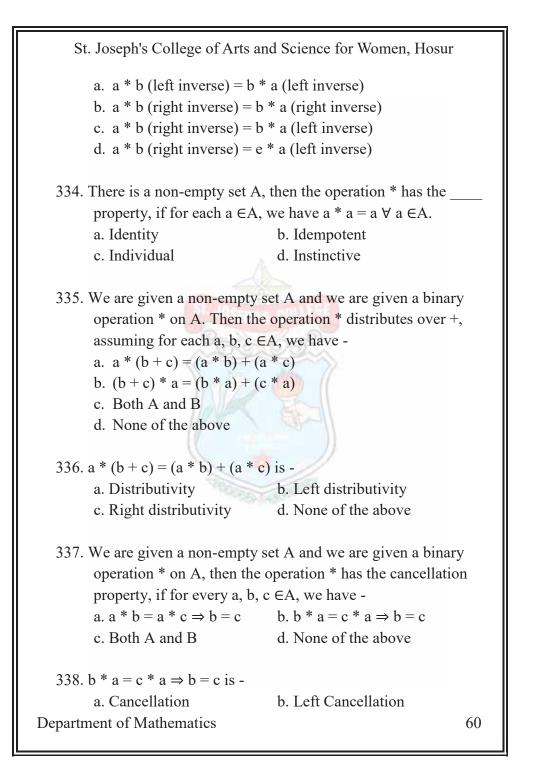
St. Joseph's College of Arts	St. Joseph's College of Arts and Science for Women, Hosur		
c. Expressions	d. Algebras		
 275. The Boolean Expression E (x₁,x₂,,x_n) is a set of n variables over a Boolean algebra B. An assignment of values to variables x₁, x₂, x_n means assigning elements of A as variables' values the variables in the expression by their values will allow us to evaluate E (x₁, x₂, x_n). a. Adding b. Subtracting c. Multiplying d. Substituting 			
276. When n variables are assigned the same value for every assignment, two Boolean expressions are said to be			
	b. Unequal		
c. Zero	d. Similar		
277 indicates that $E_1(x_1, x_2,, x_n)$ and $E_2(x_1, x_2,, x_n)$ are equivalent. a. $E_1(x_1, x_2,, x_n) + E_2(x_1, x_2,, x_n)$ b. $E_1(x_1, x_2,, x_n) - E_2(x_1, x_2,, x_n)$ c. $E_1(x_1, x_2,, x_n) = E_2(x_1, x_2,, x_n)$ d. $E_1(x_1, x_2,, x_n)! = E_2(x_1, x_2,, x_n)$			
278. A Boolean Expression co	mposed of n variables is a if it		
follows the form $\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3 \wedge \dots \wedge \overline{x}_n$ where x_i is used to denote x_i or x_i' .			
a. Max-term	b. Min-term		
c. Median-term	d. Mode-term		
279. The Boolean Algebra is a	279. The Boolean Algebra is a complemented lattice.		
a. Associative	b. Distributive		
c. Commutative	d. Supplementary		
Department of Mathematics	50		

St. Joseph's College of Arts and Science for Women, Hosur		
280. Boolean Algebra is denoted by -		
a. (B, A,V,',1)	b. (B, A,V,',0)	
c. (B, ^,',0,1)	d. (B, A,V,',0,1)	
	ary operations \land (*) and \lor (+) and a	
operation (compleme	-	
a. Unary	b. Binary	
c. Ternary	d. None	
282. Since (B,A,V) represents a	distributive lattice, each	
element of B has a unique	complement.	
a. Complemented	b. Supplemented	
c. Adjacent	d. None	
283. What is/are the property/ies of Boolean Algebra?		
a. Commutative	b. Distributive	
c. Identity	d. All of the above	
284. Commutative Property states that -		
a. $a+b=b+a$	b. a*b=b *a	
c. Both A and B	d. None of the above	
285. Distributive Property states that -		
	b. a*(b+c)=(a*b)+(a*c)	
c. Both A and B	d. None of the above	
286. Identity Property states the	at -	
a. a+0=a	b. a *1=a	
c. Both A and B	d. None of the above	
Department of Mathematics	51	

St. Joseph's College of Arts and Science for Women, Hosur		
287. Complemented Laws states that -		
a. a+a'=1	b. a * a'=0	
c. Both A and B	d. None of the above	
288. If A itself is a Boolean A of B.	lgebra, then (A,*, +,', 0,1) is a	
a. Sub-algebra	b. Sub-Boolean Algebra	
c. Both A and B	d. None of the above	
289. Subsets of a Boolean Algebra can be, but may or may not be subalgebras because B may not be closed.		
a. Algebra	b. Boolean Algebra	
c. Sub-algebra	d. Sub-Boolean Algebra	
290. If two Boolean algebras B and B1 go together one to one, then they are called and are preserved for all elements from B including a, b in B.		
a. Isomorphic	b. Boolean Functions	
c. Boolean Expressions	d. None of the above	
291. Which of the following are Isomorphic-Boolean Algebras?		
a. $f(a+b)=f(a)+f(b)$	b. $f(a^*b)=f(a)^*f(b)$	
c. $f(a')=f(a)'$	d. All of the above	
292. Which of the following is/are the basic property/ies of Boolean Algebra?		
a. Idempotent Law	b. Commutative Property	
c. Associative Property	d. All of the above	
Department of Mathematics	52	

St. Joseph's College of Arts and Science for Women, Hosur		
293. Which of the following is/are NOT the basic property/ies of Boolean Algebra?		
a. Absorption Laws	b. Identity Laws	
c. Null Laws	d. Evolution Laws	
294. Which of the following s	tatement is TRUE?	
a. $0 \le a \le 1 \forall a \in B$.		
	and any and by fair arrange along and h	
-	nplement b' for every element b.	
c. Both A and B		
d. None of the above		
295. When a Boolean Express	ion based on n variables specifies a	
function from A" to A, i	t is called a Boolean	
a. Algebra	b. Expression	
c. Function	d. Law	
	B	
296. descriptions of fund	ctions are always possible.	
a. Tabular	b. Graphical	
c. Analytical	d. None	
o. Tinary trout	d. Hone	
297 can be used as an a	Iternative method of expressing	
functions.	ternative method of expressing	
a. Function	h Expression	
	b. Expression	
c. Law	d. Algebra	
	1 110 0	
	ebra considers all functions from	
as Boolean functions.		
	b. [0, 1] ³ to [0, 1]	
c. $[0, 1]^{n-1}$ to $[0, 1]$	d. $[0, 1]^n$ to $[0, 1]$	
Department of Mathematics	53	

St. Joseph's College of Arts and Science for Women, Hosur		
299. It is a normal subgroup of G if for all $h \in H$ and $x \in G$, $\in H$.		
a. x h x ⁻¹	b. x h x^{+1}	
c. x h x	d. x h x ⁻²	
300. When x H x ⁻¹ = $[x h x^{-1} h \in$	H} then H is normal in G x H	
$x^{-1} \subseteq H, \forall x \in G.$		
a. If	b. If and only if	
c. If not	d. None of the above	
201 The subgroup H of an abalia	n group G is normal in G if G is an	
group.	if group G is normal in G if G is an	
a. Abelian	b. Normal	
c. Sub	-11	
c. Sub	d. None of the above	
302. Homomorphisms are mappin	$ngs such that, x, y \in G.$	
	b. $f(xy) = f(x) + f(y)$	
c. $f(xy) = f(x) - f(y)$	d. $f(xy) = f(x) / f(y)$	
	erations of the groups G and G' are	
different, the mapping f pre		
a. Group	b. Subgroup	
c. Supergroup	d. None	
304. Even though the binary operations of the groups G and G' are		
different, the mapping f preserves the group operation. This		
condition is known as -		
a. Hypermorphism	b. Homomorphism	
c. Heteromorphism	d. Hypomorphism	
Department of Mathematics	54	


St. Joseph's College of Arts	and Science for Women Hosur	
St. Joseph's College of Arts and Science for Women, Hosur		
305. A homomorphism of a gr	roup G to a group G' with identity e' is	
a homomorphism with a l		
a. e	b. e'	
c. e"	d. e'''	
306 f represents the ker	nel of f.	
a. f	b. K f	
c. Ker f	d. None	
307. The set of f consist	s of the range of the map f, denoted	
by f (G).	s of the tange of the map 1, achieved	
a. Direction	b. Line	
c. Image	d. Circle	
308. Homomorphic images of	G are those whose $f(G) = $	
a. G	b. G'	
c. F	d. F'	
309. A semi-group is defined as one that satisfies these properties:		
a. An operation * on set A		
b. Operation * is an assoc	ciative operation.	
c. Both A and B		
d. None of the above		
310. Suppose we have a semigroup (A, *) and let $B \subseteq A$ are		
formed when sets B are closed under operations *.		
a. Semigroups	b. Supersemigroups	
c. Subsemigroups	d. None	
311. '°' is a -		
Department of Mathematics	55	

St. Joseph's College of Arts and Science for Women, Hosur a. Grouping Operation b. Concatenation Operation c. Conversion Operation d. None 312. (A*,°) is a a. Semigroup b. Subsemigroup c. Supersemigroup d. None 313. Semigroup (A*,°) generated by set A is known as a. Bound Semigroup b. Free semigroup c. Partial semigroup _____d. Partially bound semigroup 314. The algebraic system (A, o) consists of the binary operation o on A. If (A, o) satisfies the following property/ies, then it is said to be a monoid: a. Set A can only be operated on by the operation o. b. Associative operations are based on the o operation. c. A unique element exists, namely the operation o. d. All of the above 315. When (S, o) satisfies the following properties, then it is called a submonoid of (M, o) -A closed operation is carried out under operation o. a. It is possible to identify an element by its identity value e b. ΕT c. Both A and B d. None of the above 316. H is a subgroup of G if it is a of G that is itself a group under G's operation. a. Void Set b. Non-void set Department of Mathematics 56

St. Joseph's College of Arts and Science for Women, Hosur			
c. Void Subset	d. Non-void Subset		
 317. Subsets of groups G are subgroups of G if: a. An identity element is a∈ H. b. The operation of G closes H, meaning that if a, b∈ H, then a, b∈ H 			
 c. Inverses of H have closed forms, i.e., if a∈ H then a⁻¹∈ H. d. All of the above 			
 318. Subgroups K of a group G are said to be subgroups if every element of K can be expressed in the form xn for some n ∈Z. 			
a. Oval	b. Cyclic		
c. Spherical	d. Centric		
319. x is the of group	319. x is the of group G's subgroup K, and $K = \langle x \rangle$.		
a. Function	b. Query		
c. Generator	d. Supergroup		
320. We say that G is cyclic if, and x is its generator.			
a. $G \neq x$	b. $G = x$		
c. G != x	d. G === x		
321. A group G is cyclic if every element of G can be written as			
for some $n \in Z$.			
a. x ⁿ	b. x _n		
c. x ⁿ⁻¹	d. n ^x		
322. Suppose we have an algebraic system (G,*), where * is a			
binary operation on G. An abelian group is one which satisfies			

St. Joseph's College of Arts and Science for Women, Hosur		
all of the group's properties plus the property of the		
group's operation.		
a. Closed	b. Associative	
c. Identity	d. All of the above	
323. Let G be a group and H a	a subgroup. It is possible to express	
the elements of a left cose any $x \in G$.	et of H in G as $xH = \{ _ h \in H \}$ for	
a. xh	b. hx	
c. xxh	d. hhx	
324. A right coset of H in G is	s a subset with radius $Hx = \{_ h \in H$	
}, for any x∈G.	200	
a. xh	b. hx	
c. xxh	d. hhx	
325. A coset and a	coset are respectively called	
complexes xH and Hx.		
a. Left, right	b. Right, Left	
c. Left, left	d. Right, right	
326. If the group operation is additive (+), then $__= \{x+h \mid h \}$		
\in H} denotes a left coset. a. x + H	b. H + x	
c. Both A and B	d. None of the above	
327. If the group operation is additive (+), then $___ = \{x+h \mid h \in H\}$ denotes a right coset.		
a. $x + H$	b. H + x	
a. x + H c. x – H	d. H - x	
V. A 11	u. 11 A	
	5 0	

St. Joseph's College of Arts and Science for Women, Hosur		
328. Which of the following is a/the property/ies of binary operations?		
a. Closure Property	b. Associative Property	
c. Commutative Property		
329. A non-empty set A and a binary operation * on A are closed		
under the operation *, if $__ \in A$, where a and b are elements of A.		
a. a*b	b. a+b	
c. a-b	d. a/b	
 330. There is a non-empty set A, then a binary operation * on A is associative, if for every a, b, c, ∈ A, we have a. (a + b) * c = a* (b*c) b. (a * b) * c = a* (b*c) 		
c. $(a / b) * c = a* (b*c)$		
331. A non-empty set A gives rise to commutative binary operations,		
if for each a, b, \in A, we hat a. $a + b = b * a$	b. $a * b = b + a$	
a. a + b = b * a c. $a - b = b * a$	d. $a * b = b * a$	
332. If we have a non-empty set A, then we have an identity property		
when e exists in A, and $___ a \forall a \in A$.		
a. $a * e$ (left identity) = $e * a$ (left identity)		
b. a * e (right identity) = e * a (right identity)		
c. a * e (right identity) = e * a (left identity)		
d. e * e (right identity) = e * a (left identity)		
333. The operation is the inverse property for a non-empty set A if \exists		
an element b in A such that = e, where b is called an inverse of a.		
Department of Mathematics	59	

St. Joseph's College of Arts and Science for Women, Hosur		
c. Right Cancellation	d. None of the above	
339. As a decision problem, it consists of finding in a finite number of steps whether a statement is ?		
a. Tautological	b. Contradictory	
e	d. All of the above	
340. It may not always be feasible to construct a for a		
Decision Problem?		
a. Dataset	b. Truth table	
c. Data table	d. Decision table	
341. If the truth table cannot be created, we consider the to		
normal forms as an alternativ	ve?	
a. Addition	b. Subtraction	
c. Reduction	d. Division	
342. How many types of normal	forms are there to which reduction	
can be performed?	_//	
a. 2	b. 3	
c. 4	d. 5	
343. Full form of DNF is -?		
a. Disjoining Normal Form	b. Disjunctive Normal Form	
c. Divisional Normal Form	d. Dividend Normal Form	
344. Which of the following is/are the type(s) of normal forms to which reduction can be performed?		
a. Disjunctive Normal Form	b. Conjunctive Normal Form	
c. Both A and B	d. None of the above	
Department of Mathematics	61	

St. Joseph's College of Arts and Science for Women, Hosur		
345. A predicate is a proposition containing, which is what's dealt with in predicate logic?		
a. Statics	b. Variables	
c. Numbers	d. None	
346. Predicates represent on on a specific?	e or more variables that are determined	
a. Domain	b. Co-domain	
c. Both a and b	d. None of the above	
proposition? a. Authorizing a value c. Both A and B 348. A quantifies a van	to a variable b. Quantifying variable d. None of the above	
a. Proposition	b. Quantity	
c. Quality	d. Quantifier	
349. How many types of quantifier are there in predicate logic?		
a. 2	b. 3	
c. 4	d. 5	
350. Which of the following is/are the type(s) of quantifier in predicate logic?		
a. Existential	b. Universal	
c. Both A and B	d. None of the above	

St. Joseph's College of Arts and Science for Women, Hosur				
351. In case of existential quantifer, the proposition $p(x)$ over the				
universe U is denoted by ?				
a. $x \exists p(x)$	$b. p(x) \exists x$			
c. p(x)x∃	d. $\exists x p(x)$			
352. $\exists x p(x)$ is read as -?	352. $\exists x p(x)$ is read as -?			
a. There exists one value	ue in the universe of variable x such that			
p(x) is true				
b. There exists at least	b. There exists at least one value in the universe of variable x			
such that $p(x)$ is false				
	c. There exists at least one value in the universe of variable			
p(x) such that x is true				
	one value in the universe of variable x			
such that $p(x)$ is true	00000			
353. Quantifier ∃ is called	quantifier?			
a. Existential	b. Universal			
c. Both A and B	d. None of the above			
354 An existential quantifier	can be written in which way(s) in a			
proposition -?				
a. $(\exists x \in A)p(x)$	b. $\exists x \in A$ such that p (x)			
c. $(\exists x)p(x)$	d. All of the above			
355. In case of universal quantifer, the proposition $p(x)$ over the				
universe U is denoted b				
a. $x \forall p(x)$	b. $p(x), \exists \forall$			
c. $p(x), x \forall$	d. $\forall x, p(x)$			
356. $\forall x, p(x)$ is read as -?				
a. For every $x \in U, p(x)$ is	sfalse b. For every $x \in p(x)$ is true			
Department of Mathematics	63			

St. Joseph's College of Arts ar	nd Science for Women, Hosur
c. For every $x \in U, p(x)$ is tr	d. For every $p(x)$ is true
357. Quantifier ∀ is called	quantifier?
a. Existential	b. Universal
c. Both A and B	d. None of the above
358. An universal quantifier ca	in be written in which way(s) in a
proposition -?	
a. ∀x∈A,p(x)	b. $p(x), \forall x \in A$
c. $\forall x, p(x)$	d. All of the above
359. Which of the following sta	atement is/are TRUE?
a. An existentially quantif	ed proposition arises from negating
a universally quantified	proposition
b. An universally quantifie	ed proposition arises from negating a
existentially quantified	proposition
c. Both A and B	E
d. None of the above	
360. What is the rule for the ne	gation of quantified proposition?
a. Dissociative law	b. Associative law
c. Demorgan's law	d. Identity law
361. Multiple quantifiers can be variable?	e used to quantify propositions with
a. One	b. Two
c. More than one	d. None
362 to arrange the multi	ple universal quantifiers or
existential quantifiers in a	particular order in order to make the
proposition meaningful?	
Department of Mathematics	64

St. Joseph's College of Arts and Science for Women, Hosur				
a. It is necessary	b. It is not necessary			
c. Sometimes it is necessar	y d. None of the above			
363. It is impossible to change the order of the quantifiers of the				
	_ quantifiers without altering the			
meaning of the proposition				
a. Universal	b. Existential			
c. Both A and B	d. None of the above			
364. Proposition $\exists x \forall y p(x,y) m$	eans -?			
a. There exists some x such that $p(x, y)$ is false for every y.				
b. There exists some x such that $p(x, y)$ is true for every x.				
c. There exists some y such	that $p(x, y)$ is false for every y.			
d. There exists some x such	h that $p(x, y)$ is true for every y.			
365. How many properties are there in Partial Order Relations?				
a. 2	b. 3			
c. 4	d. 5			
366. Which of the following is a property in Partial Order relations?				
a. Reflexive	b. Antisymmetric			
c. Transitive	d. All of the above			
367. A partial order set or is	s the set A coupled with a partial			
order relation R on the set A?				
a. OFFSET	b. OPSET			
c. POSET	d. PFFSET			
368. The total order relation on set A is known as ?				
a. (a, b) ∈ R	b. (b, a) $\in \mathbb{R}$			
Department of Mathematics	65			

	St. Joseph's College of Arts and Science for Women, Hosur		
	c. a = b	d. All of the above	
	369. If $(a, b) \in R$ and $(b, c) \in R$ implies, then R is circular?		
	a. $(a, a) \in \mathbb{R}$	b. $(a, b) \in \mathbb{R}$	
	c. $(c, a) \in R$	d. $(b, a) \in \mathbb{R}$	
	370. In mathematics, a relation R is called a Compatible		
	Relation?		
	a. Reflexive	b. Symmetric Binary	
	c. Both a and b	d. None of the above	
371. A relationship of equivalence must be, but a relationship of			
	compatibility does not have to be an equivalence?		
	a. Compatible	b. Composite	
	c. Cartesian	d. Circular	
	10 Les		
	Answers	1 South	
		- //	
		3.c, 9.a, 10.c, 11.d, 12.c, 13.d, 14.b,	
		c, 21.d, 22.c, 23.b, 24.c, 25.d, 26.a,	
	27.c, 28.a, 29.c, 30.a, 31.c, 32.a	a, 33.d, 34.c, 35.a, 36.d, 37.d, 38.a,	
	39.b, 40.c, 41.a, 42.b, 43.a, 44.	c, 45.a, 46.c, 47.d, 48.d, 49.b, 50.b,	
		d, 57.c, 58.c, 59.d, 60.c, 61.b, 62.c,	
	63.c, 64.b, 65.b, 66.a, 67.b, 68.	c, 69.a, 70.a, 71.b, 72.a, 73.c, 74.a,	
	75.c, 76.c, 77.a, 78.b, 79.c, 80.c	d, 81.b, 82.b, 83.c, 84.d, 85.b, 86.d,	
	87.a, 88.c, 89.a, 90.b, 91.a, 92.l	b, 93.d, 94.a, 95.c, 96.b, 97.b, 98.b,	
	99.b, 100.a, 101.c, 102.a, 103.b	o, 104.d, 105.b, 106.a, 107.c, 108.c,	
	109.b, 110.c, 111.c, 112.a, 113.	b, 114.b, 115.b, 116.d, 117.d, 118.b,	

119.c, 120.c, 121.b, 122.d, 123.d, 124.d, 125.b, 126.a, 127.b, 128.a, 129.c, 130.d, 131.a, 132.c, 133.d, 134.d, 135.a, 136.d, 137.d, 138.c, Department of Mathematics 66

139.d, 140.d, 141.c, 142.c, 143.c, 144.b, 145.c, 146.d, 147.b, 148.c, 149.c, 150.c, 151.d, 152.c, 153.c, 154.c, 155.c, 156.d, 157.a, 158.c, 159.c, 160.d, 161.c, 162.d, 163.b, 164.c, 165.d, 166.c, 167.d, 168.c, 169.c, 170.b, 171.d, 172.d, 173.c, 174.a, 175.c, 176.a, 177.d, 178.c, 179.c, 180.c, 181.c, 182.d, 183.d, 184.a, 185.d, 186.d, 187.a, 188.a, 189.b, 190.c, 191.c, 192.c, 193.c, 194.c, 195.b, 196.c, 197.b, 198.c, 199.c, 200.a, 201.c, 202.d, 203.a, 204.b, 205.c, 206.d, 207.a, 208.d, 209.c, 210.c, 211.c, 212.c, 213.c, 214.c, 215.a, 216.a, 217.d, 218.a, 219.c, 220.b, 221.b, 222.b, 223.b, 224.a, 225.c, 226.a, 227.b, 228.d, 229.b, 230.a, 231.c, 232.a, 233.c, 234.b, 235.a, 236.b, 237.d, 238.a, 239.a, 240.b, 241.b, 242.b, 243.a, 244.b, 245.b, 246.b, 247.a, 248.b, 249.b, 250.b, 251.a, 252.b, 253.a, 254.a, 255.a, 256.b, 257.c, 258.d, 259.b, 260.d, 261.b, 262.b, 263.c, 264.a, 265.c, 266.a, 267.c, 268.a, 269.d, 270.c, 271.a, 272.b, 273.a, 274.b, 275.c, 276.c, 277.c, 278.c, 279.d, 280.c, 281.d, 282.a, 283.c, 284.d, 285.b, 286.d, 287.a, 288.a, 289.d, 290.c, 291.c, 292.c, 293.c, 294.c, 295.b, 296.a, 297.d, 298.d, 299.d, 300.c, 301.a, 302.b, 303.d, 304.a, 305.b, 306.a, 307.a, 308.a, 309.b, 310.b, 311.c, 312.c, 313.b, 314.c, 315.c, 316.b, 317.a, 318.b, 319.d, 320.c, 321.b, 322.b, 323.c, 324.b, 325.a, 326.c, 327.a, 328.b, 329.a, 330.a, 331.b, 332.d, 333.a, 334.b, 335.d, 336.c, 337.c, 338.b, 339.c, 340.b, 341.c, 342.c, 343.d, 344.b, 345.c, 346.a, 347.b, 348.c, 349.b, 350.a, 351.d, 352.a, 353.a, 354.d, 355.d, 356.c, 357.b, 358.d, 359.c, 360.c, 361.c, 362.b, 363.c, 364.d, 365.b, 366.d, 367.c, 368.d, 369.c, 370.c, 371.a.

Mrs. B.K. JALEESHA, Head and Assistant Professor in the Department of Mathematics at St. Joseph's College of and Science for Women, Hosur, Tamil Nadu. Arts Completed Bachelor's Degree in 2003 and Master's Degree in 2005 at Manonmaniam Sundaranar University. Did Master of Philosophy at Madurai Kamaraj University in 2006 and completed Bachelor of Education at Bharathiyar University in 2012. Having teaching experience of 16 years out of 3 years in Higher Secondary School and 13 years in Arts and Science College. Published 3 Scopus, 2 WoS and 17 papers in International Journals and conference proceedings. Presented more than 10 papers in National and International conferences. Guided 11 M.phil Scholars and 15 PG students. Interested Areas are Analysis, Topology, and Fuzzy Optimization in Operations Research.

