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1.1 Solution of Algebraic and Transcendental Equations
1.1.1 Introduction

A polynomial equation of the form

SO=p@=ax"'+ta x> +@x+. .. . tanx+ta=0 ced)
is called an Algebraic equation. For example,

X' =4y 4+ 5=0,4x° - 5x + 7=0; 2¢* - 5x* + Tx + 5 = 0 arc algebraic equations.

An equation which contains polynomials, trigonometric functions, logarithmic functions,
exponential functions etc., is called a Transcendental equation. For example,

tanx—e*=0; sinxy—xe®=10; xe'=cosx
are transcendental equations.

Finding the roots or zeros of an equation of the form f{x) = 0 is an important problem in
science and engineering. We assume that f(x) is continuous in the required interval. A root of
an equation f (x) = 0 is the value of x, say x = a for which () = 0. Geometrically, a root of
an equation f(x) = 0 is the value of x at which the graph of the equation y = f(x) intersects the
x — axis (see Fig. 1)

ﬁ::qf'i

.<>-=ﬂ:x}
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Fig. 1 Geometrical Interpretation of a root of f(x)=0

L J

A number « is a simple root of f (x) = 0; if /(o) = 0 and f (@} = 0. Then, we can write
[x) as,

S(x) = (x— o) glx), gla) #0 cd2)
A number c is a multiple root of multiplicity m of f{x) =0, if f{a) = (a) = ....= f™ VN (a)=0
and S™(a)=0.

Then, f(x) can be writhen as,
J)=(x-o)"g(x),g(a) # 0 )
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A polynomial equation of degree n will have exactly n roots, real or complex, simple or
multiple. A transcendental equation may have one root or no root or infinite number of roots
depending on the form of  f(x).

The methods of finding the roots of f(x) = 0 are classified as,
1. Direct Methods
2. Numerical Methods.

Direct methods give the exact values of all the roots in a finite number of steps. Numerical
methods are based on the idea of successive approximations. In these methods, we start with
one or two initial approximations to the root and obtain a sequence of approximations xo, x1,

.. xx which in the limit as k —0 converge to the exact rootx = a.

There are no direct methods for solving higher degree algebraic equations or
transcendental equations. Such equations can be solved by Numerical methods. In these
methods, we first find an interval in which the root lies. I a and b are two numbers such that
S(a) and f(b) have opposite signs, then a root of f(x) = 0 lies in between a and b, We take a or
b or any valve in between a or b as first approximation xi. This is further improved by
numerical methods. Here we discuss few important Numerical methods to find a root of

Sz =0,

1.1.2  Bisection Method

This is a very simple method. Identify two points x = a and x = b such that f (a) and f(b) are
having opposite signs. Let f(a) be negative and f(#) be positive. Then there will be a root of
S{x) = 0 in between a and b.

Let the first approximation be the mid point of the interval (a, b). i.e.

§a+b!

X = 2

If f(x1) = 0, then x) is a root, other wise root lies between a and x) or x; and b according as
S (x1) is positive or negative. Then again we bisect the interval and continue the process until
the root 15 found to desired accuracy. Let £ (a1) is positive, then root lies in between a and x
(see fig.2.). The second approximation to the root is given by,
8 _ (a+x)

If f{x2) 15 negative, then next approximation is given by

_(x2+‘rll
.‘t'_i—_z_

Similarly we can get other approximations. This method is also called Bolzano method.
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y = f{x)

a x, /ﬁ;}
rtqi/i_/ X X% b ik

Fig. 2 Bisection Method

Note: The interval width is reduced by a factor of one-halF at cach step and at the end of the
n' step, the new interval will be [a : h n] of length |-5 = ﬂ'] . The number of iterations n required
2”
to achieve an accuracy = is given by,
log,{[p-a]
+
ny— ) o)

R log, 2

ExampPLE 1

Find a real root of the equation f(x) = x* —x — 1 = 0, using Bisection method.

SOLUTION
First find the interval in which the root lies, by trail and error method.
JS(1)=1*=1-1=-1, which is negative
S(2)=2"-2 -1 =5, which is positive
. Arootof f{x)=x' —x— | =0 lies in between | and 2.
x = {H;}:% =15

flx)=/(1.5)=(1.5) - 1.5 - 1 = 0.875, which is positive.
Hence, the root lies in between | and 1.5
_ (1+L.35)

™=

=1.25

F(x2)=f(1.25)=(1.25)* - 1.25 - 1 =-0.29, which is negative.

Hence, the root lies in between 1.25 and 1.5
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_(1.25+1.5)
x- T = 1.375

Similarly, we get xa= 13125, vs= 134375, vs = 1328125 etc.

EXAMPLE 2

Find a root of f(x) = xe* — | = 0, using Bisection method, correct to three decimal places.

SOLUTION
f(0)=0e"-1=-1<0
f(y=1le'=1=1T7183>0

Hence a root of £(x) = 0 lies in between 0 and 1.
X = &H:ﬂ.ﬁ
2
J(0.5)=0.5¢"-1=-0.1756
Hence the root lies in between 0.5 and 1
_(054+1)
2 2

Proceeding like this, we get the sequence of approximations as follows.

=0.75

x3=0.625
x3=0.5625
xs = 0.59375
x5 = 0.5781
x7=0.5703
xs = 056064
xo=0.5684
xio=10.5674
xn =0.5669
xi2=0.5672,
xi:=0.5671,

Hence, the required root correct to three decimal places is, x = 0.567.

1.1.3 Method of False Position

This is another method to find the roots of f (x) = 0. This method is also known as Regular
False Method.

In this method, we choose two points @ and b such that /(a) and f(b) are of opposite signs.
Hence a root lies in between these points. The equation of the chord joining the two points,
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{a.f(a)) and (b, f (b)) is given by
y—fla) _ f(b)- fla)

x—a b-a

(5

We replace the part of the curve between the points [a, /(a)] and [b, f(#)] by means of the
chord joining these points and we take the point of intersection of the chord with the x axis as
an approximation to the root (see Fig.3). The point of intersection is obtained by putting y =0

in (5), as
af(b)—bfla)
—p= T B
T e) @ i

xy is the first approximation to the root of f(x) = 0.

Y

Fig. 3 Mecthod of False Position

If £ (x1) and f(a) arc of opposite signs, then the root lics between a and x; and we replace b
by x1 in (6) and obtain the next approximation x2. Otherwise, we replace a by x) and generate
the next approximation. The procedure is repeated till the root is obtained to the desired
accuracy. This method is also called linear interpolation method or chord method.

ExamPLE 3
Find a real root of the equation f(x) = x* — 2x — 5 = 0 by method of False position.

SOLUTION
f(2)=—1andf(3)=16

Hence the root lies in between 2 and 3.
Takea=2,b=3.
X = af(b)-bfla)

f(b) - fla)
_2(16)-3(-1) _ 35

16— (-1} 17

= 2058823529,
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Sla)=(2.058823529) =—0.390799917 < .
Therefore the root lies between 0.058823529 and 3. Again, using the formula, we get the

second approximation as,
. 2.058823529(16) — 3(-0.390799917)

) 16— (—0.390799917)

= 208126366

Proceeding like this, we get the next approximation as,
x3 = 2.089639211,
xy =2.0927395735,
xs = 2.09388371,
xs = 2.094305452,
a7 = 2.094460846

ExaAMPLE 4
Determine the root of the equation cos x — x €' = 0 by the method of False position.

SOLUTION
F(0)=1andf(1)=-2.177979523

a=0and b= 1. The root lies in between (0 and 1
e 0(=2.177979523) - 1(1) 03146653378
- 2.177979523 -1
Sy =1£(0.314653378) = 0.51986.
2. The root lies in between 0314653378 and 1.

_ 0.3146653378(-2.177979523) - 1(0.51986)
Hence, ns =(.44673
—-2.177979523 - 0.51986

Proceeding like this, we get
x: = 0.49402,
xy = 0.50995,
xs = 0.51520,
x5 =0.51692,

EXAMPLE 5

Determine the smallest positive root of x — e * = (), correct of three significant figures using

Regula False method.

SOLUTION
Here, f0)y=0-¢e"=-]
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and f(1)y=1-¢'=063212.

o The smallest positive root lies in between O and 1. Herea=0and b= 1]
_ 0(0.63212) - 1(-1) 06137
- =0.
L 063212+
£(0.6127) = 0.6127 — ¢ 6127 = (.0708

Hence, the next approximation lies in between 0 and 0.6127. Proceeding like this, we get

x:=0.57219.0 x3=10.5677, x3=0.5672, xs=0.5671,
Hence, the smallest positive root, which is correct up to three decimal places is,
x=0.567

1.1.4 The lteration Method

In the previous methods, we have identified the interval in which the root of f(x) = 0 lies, we
discuss the methods which require one or more starting values of x, which need not
necessarily enclose the root of [ (x) = 0. The iteration method is one such method, which
requires one starting value of x.

We can use this method, if we can express f(x) =0, as

x=d(x) — )

We can express [ (x) = 0, in the above form in more than one way also. For example, the

equation x* + x> — | = 0 can be expressed in the following ways.
1

¥=(l+x)?

x=(1-x)%

x=(1-x%
and so on

Let xy be an approximation to the desired rootE , which we can find graphically or
otherwise. Substituting xp in right hand side of (1), we get the first approximation as

x1 =& (x0) el 2)
The successive approximations are given by
x2=¢ ()

=0 (x2) v ®)

Xn =0 (xn 1)
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Nate: The sequence of approximations xp, X1, X2 ... X, given by (3) converges to the root £ in
ainterval L if [¢(x) <1 forallxin L.

EXAMPLE 6
Using the method of iteration find a positive root between 0 and 1 of the equation
xet=1
SOLUTION
The given equation can be writhen asx =™
dx)=e™

Here |§"(x) <1 for x <1

oo We can use iterative method
Let x=1
|

xn=€'= — =0.3678794.
e

x; =g 03T8TH = (,6922006.
x3 = e 06322006 = (). 5004735

Proceeding like this, we get the required root as x = 0.5671.

EXAMPLE 7

Find the root of the equation 2x = cos x + 3; correct to three decimal places using Iteration
method.

SOLUTION

Given equation can be written as
cosx +3
x={008+5)
2
sin x

2

[ (x) |= <l

Hence iteration method can be applied
Let xo= C

xn= Ili({:usn +3\|||=|_5
RS
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e 1(cnsl.5+3} =1.535
S22

Similarly,
x3= L1518,
xy= 1526,
xs = 1.522,
xs=1.524,
xr = 1.523,
xs=1.524,

.. The required root is x = 1.524

EXAMPLE 8

Find a real root of 2x — logjp x = 7 by the iteration method

SOLUTION

The given equation can be written as,
1
g 2 (logio x +7)

Let x= 3.8

x= (logio 3.8+ 7)=3.79

72
1

n= E (logie 3.79+ 7) = 3.7893
1

By 3 (logip 3.7893 + T) = 3.7893.

o x=3.7893 15 a root of the given equation which is correct to four significant digits.
1.1.5 Newton Raphson Method

This is another important method. Let xy be approximation for the root of f (x) = 0. Let

x1 = xo + & be the correet root so that f{x1) = 0. Expanding f(x1) = f (xo + k) by Taylor serics,
we gel

a5

. I
fle)=fi+m=f(xo)+h [ (x0)+ e S o)+ =0 ...

For small valves of h, neglecting the terms with h%, h* ... ete,. We get

o) +h £ (x)=0 veen2)
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o )
f(x,)
x=xot+h
_ S(x)
S xg)
Proceeding like this, successive approximation xz, X3, ... Xn+ 1 are given by,
X Kosnumninninne T o msisninis ames amimmanainsinmpnninns amsmnamansmpaninas smsmmamamisns
-Tn~|'_1'n—f. ) (3
fix)
Form=0,1,2,......
Note:

(i) The approximation xu. given by (3) converges, provided that the initial
approximation xo 15 chosen sufficiently close to root of f(x) = 0.

(i1) Convergence of Newton-Raphson method: Newton-Raphson method is similar to
iteration method

fix)
dlx)=x-—— sl 1)
S (x)
differentiating (1) w.r.t to ‘x" and using condition for convergence of iteration method i.e.
[6'o)] <1,

We get

1 LS = S X))
LfF

I{I

Simplifying we get condition for convergence of Newton-Raphson method is

£ S ") | < [f GO

ExXAMPLE 9

Find a root of the equation x* — 2x — 5 = 0 by Newton — Raphson method.

SoLuTIiON
Here f(x) =2 — 2x - 5.
Fix)=32-2
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MNewton — Raphson method formula is

Ap 4| = Xn .’_.{x'ﬂ}
x3—2v —5
Xp+| = Xp— _°" i : B | b P P ALY (1)
A -2
Let xp=2
So)=f(2)=22-2{2)-5=~1
and SMxo)= S (=3(2P-2=10

Putting n = (1in (1), we get

e

L) =f2.01)=(2.1)* - 2(2.1)~ 5=0.061
£l = f1R1)=32.17-2=11.23
=20 201 5 094568

& 11.23

Similarly, we can caleulate x3, x4 ...

ExampLE 10

Find a root of ¥ sin x + cos x = (), using Newton — Raphson method

SOLUTION
fxy=xsinx+cosx
Sf(x)=sInXx+XcosX—SNX=XCOosx

The Mewton — Raphson method formula is,
X, SiNX, +COSX,

x =x- o on=0,1,2, .
n+l n T
Let m=n=3l416.
“ ~131416 3.1416sinT + cosn _ 38033,

3. 141 6cosm
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Similarly,
x2=2.7986
x3=2.7984
x4 = 2.7984

. x=2.7984 can be taken as a root of the equation x sin x + cos x = ().

ExAMPLE 11

Find the smallest positive root of x — e = 0, using Newton — Raphson method.

SOLUTION
Here flx)=x—e*
fl@)=1+e*
f(0)==1and f(1)=0.63212.

. The smallest positive root of f (x) = 0 lies in between 0 and 1.
Let xn=1

The Newton — Raphson method formula is,

X —e™n
Xn+1 =Xp= " ,n=0,1,2, ......
l+¢n

f£(0)= 7(1)=0.63212
(0= 1 (1)= 13679

X" 0.63212
x1=xp— /9 =1 =0.5379.
l+e™® 1.3679

£(0.5379) = - 0.0461
£ (0.5379) = 1.584.
0.0461
1.584

= 03379+ =0.567

Similarly, x3=0.56714

. x = 0.567 can be taken as the smallest positive root of ¥ — ¢ = (., correct to three
decimal places.

Note: A method is said to be of order P or has the rate of convergence P, if P is the largest

positive real number for which there exists a finite constant ¢ # (), such that
|E 1 = C|E |P ceene LA
Ksl K
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Where €,=x; —£ is the error in the k™ iterate. C is called Asymptotic Error constant and
depends on derivative of fix) at x = £ . It can be shown easily that the order of
convergence of Newton — Raphson method is 2.

Exercise - 1.1

10.

11.

12.

Using Bisection method find the smallest positive root of x* — x — 4 = () which is correct
to two decimal places.

[Ans: 1.80]
Obtain a root correct to three decimal places of x° — 18 = 0, using Bisection Method.
[Ans: 2.621]
Find a root of the equation xe* — 1 = 0 which lies in (0, 1), using Bisection Method.
|Ans: 0.567]

Using Method of False position, obtain a root of x* +x° + x + 7 = 0, correct to three
decimal places.

[Ans: — 2.105]

Find the root of x* — 2x* + 3x — 5 = 0, which lics between 1 and 2, using Regula False
method.

[Ans: 1.8438]
Compute the real root of x log x — 1.2 = (), by the Method of False position.
[Ans: 2.740]

Find the root of the equation cos x — x e* = (), correct to four decimal places by Method
of False position

[Ans: 0.5178]

Using Iteration Method find a real root of the equation x* — x> — 1 = 0.

[Ans: 1.466]
Find a real root of sin®x = x* — 1, using iteration Method.

[Ans: 1.404]
Find a root of sin x = 10 (x — 1), using Iteration Method.

|Ans: 1.088]
Find a real root of cot x = &%, using Iteration Method.

[Ans: 0.5314]

Find a root of x* — x — 10 = 0 by Newton — Raphson Method.
|Ans: 1.856]
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13, Find a real root of x — cos x = 0 by Newton — Raphson Method.
[Ans: 0.739]
14. Find a root of 2x — 3 sin x — 5= () by Newton — Raphson Method.
[Ans: 2.883238]
5. Find a smallest positive root of tan x = x by Newton — Raphson Method.
[Ans: 4.4934]

Summary

Solution of algebraic and transcendental equations
1. The numerical methods to find the roots of f(x) =0

(i)  Bisection method: If a function f (x) is continuous between a and b, f(a) and f
(b) are of apposite sign then there exists at least one root between a and b. The

: . a+h
approximate value of the root between them is o =——

If f (x0) = 0 then the xy is the %nl'rect f = (). If f (x0) # 0, then the root
¢iﬂ:r I}ic::i in bttwamxilra, b |ur "Iﬁﬂlﬂ ,f.;:f‘fl}dcpcndi{é ogt whether f(x0) is
== ==
L ) \ J
negative or positive. Again bisection the interval and repeat same method until
the accurate root is obtained.

(i) Method of false position: (Regula false method): This is another method to find
the root of f(x) = 0. In this method, we choose two points a and b such that f(a),
f (k) are of apposite signs. Hence the root lies in between these points [a, [ (a)],
[b, f(b)] using equation of the chord joining these points and taking the point of
intersection of the chord with the x-axis as an approximate root (using y = 0 on

a f(b)=b f(a)
S(b)- f(a)

Repeat the same process till the root is obtained to the desired accuracy.

X—axis) is x; =

(iii) Newton Raphson method: The successive approximate roots are given by
TED n=0,1,2

X+l = Xy ————" 4=
S(x,)

provided that the initial approximate root xo is choosen sufficiently close to root
of f(x)=0
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Solved University Questions

Find the root of the equation 2x — log x = 7 which lies between 3.5 and 4 by

Regula—False method.

Solution

2.

Given flx) = 2x — logvin =7
Takexo=3.5, w=4
Using Regula Falsi method

A ..
ST e R LA
) 4-35
%2733~ 03979+ 05aar) oY

x: = 3.T8ER
Mow taking xo = 3.7888 and x; = 4

x3=xp-

f(l‘t) f{l‘u)f( )

x =3.7888 - ﬂ (~0.0009)
: 0.3988

x3=3.7893
The required root is = 3.789

Find a real root of x¢* = 3 using Regula-Falsi method.

Solution

Givenfix)=xe*-3=0
f(l)=e-3=-02817<0
fi2)=2e-3=11778=0
One root lies between | and 2

Now taking xo = 1,x =2
Using Regula — Falsi method

X —X
S(x l] —;{xu }f(xu)
A xof (x1)—x1f ()
()= f(n)

X1=xy—

(JNTU 2006)

A1)

(INTU - 2006)
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1(11.778) - 2(-0.2817)

11778+ 0.2817
¥ =1329

Now [ (x2) = f{1.329) = 1.329 ¢! 32 _3 = 2.0199 > 0
f(1)=-02817<0

The root lies between | and 1.329 taking xo = | and x2 = 1.329
Taking xo =1 and x: = 1.329

s, w/n) ()

2 0

_1(2.0199) + (1.329)(0.2817)
O (2.0199) + (0.2817)
23942
23006
Now f(*) = 1.04 ¢'% 3 =_0.05< 0
The root lies between x* and x*
ie, 1.04 and 1.329

[ f(x2)=0andf(x:)<0]
v = %f(x)-xif(x) - (1.04)(-005) - (1.329)(2.0199)

Y ()-f(x) (-0.05) - (20199)

x4= 1.0% is the approximate root

3. Find a real root of ¢* sin x = 1 using Regula — Falsi method

(INTU 2006)
Solution

Givenflx)=¢*sinx—1=0
Consider xo=2
fxo)=f(2)=e’sin2 - 1 =—0.7421 <0
fEN=f(3)=e*sin3-1=0.511=0
The root lies between 2 and 3
Using Regula — Falsi method
xof(x1)—x1/(x0)

S(x)—f ()

X2
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2(0.511) + 3(0.7421)
Y 0.51140.7421
x2=2.93557
Sflx2) =¥ 5in(2.93557) - 1
f(x2)=-0.35538 <0
Root lies between x: and

i.e., lies between 2.93557 and 3
x‘:f{.‘ﬁ ) —.‘Elf(-‘fl)

ETEY STy
 (2.93557)(0.511) - 3(-35538)
% 0.511+0.35538
¥1=2.96199

S (x3) = e*®19 5in(2.96199) -1 = —0.000819 < 0

root lies between x: and x;

xf(x)-xf(x)

xX4=
(= )—f(xa)
- 296199(0.511) - 3(0.000819)

0.511+0.000819
f(x%) = %255 gin(2 9625898) — 1
f(x*)=-0.0001898 < 0

The root lies between x4 and x;
xif (1) —x1/(xs)
S(x) =S ()
_ 2.9625898(0.511) +3(0.0001898)
0511+ (0.0001898)
x5 =2.9626

X5=

we have
Xs=2.9625
x5 =2.9626
x5 =2x4=2.962
The root lies between 2 and 3 is 2.962
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4. Find a real root of x ¢* = 2 using Regula - Falsi method
Solution

flxy=xet-2=0
f0y=-2=<0, f{l}=ie.,-2=(2.7183)-2
F(1)=07183=0

The root lies between (tand |
Considering xo =0, x =1
A0 =Ax)=-2: f(1)=7(x1)=07183
By Regula — Falsi method

xﬁf(xl}—.rlf(xn)

f(-t’:) f{m]
0(0.7183) 1(2) 2
2 07I83-(-2) 27183
x=10.73575
Now f(x?) =/ (0.73575) = 0.73575 " 73575 _ 2
Sflx2)=-0.46445 <0
and f(x))=0.7183> 0

The root x3 lies between x; and x>

xf(x)-xif(x)

1) -1(x)

- (0.73575)(0.7183)
0.7183 + 0.46445
L 0.52848+0.46445

Xa=

X3 =

X3

# 1.18275
. 0.992939
¥ 1.18275

0.83951
x=083951 f(x)= _{'__L
(0.83951)e

Sflx3)=(0.83951) #3951 2
Slx)=-0.056339<0

(INTU 2007)
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One root lies between x; and x:
xaf(xm)-xf(x) (0.83951)(0.7183) —1(-0.056339)
X= =

YT - S(xs) 0.7183 +0.056339
065935

X = =0.851171

40774639

Sxa)=0.851171 e0.851171 - 2 =-0.006227<0

Now xs lies between x; and xy

xif(x)=x1f(xa)

X5 =

f(m)—f{.n)
~ (0.851171)(0.7183) + (.006227)
e 0.7183 + 0.006227
0617623
2 0.724527

Now f(xs) =0.85245 085245 085245 _ 3 =_ 0 0006756 <0
One root lies between x; and xs, (i.e., x5 lies between x; and xs)

Using Regula — Falsi method
fﬂ.ESMﬂfﬂ.?lBE} + 0.0006756

Xp =
07183 + 0.0006756

x5 =0.85260
Now f(xs) = -0.00006736 < 0
One root x7 lies between x; and xg

By Regula — Falsi method
xof (x1)—x1/(x6)

e
S(x1)—f(x6)
~ (0.85260)(0.7183) +0.0006736
- 0.7183 + 0.0006736
x7 = 0.85260
From x* = 0.85260 and x5 = 0.85260

X7

A real root of the given equation is 0.85260
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5. Using Newton-Raphson method (a) Find square root of a number (b) Find a reciprocal
of a number [INTU 2008]

Solution
(a) Let n be the number
and x= JH = X=n
If fx)=x'-n=0 el 1)
Then the solution to f(x)=x* —n=0isx= Vn.
Sfi(x)=2x
by Newton Raphson method

g = - S0 L)
AN e e D)
Loy =L i\’ )

SEs £

using the above formula the square root of any number “n” can be found to required

accuracy
(b) To find the reciprocal of a number ‘n’
. 1
Jlxj= _—n=40 v 1)
X

~osolution of (1) isx= _
"

FU) ==y
g

Now by Newton-Raphson method. x =y — l" fix) ‘5

Sl
&

Yio1=x2-xn

using the abave formula the reciprocal of a number can be found to required accuracy.
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6. Find the reciprocal of 18 using Newton—Raphson method [INTU 2004]
Solution
The Newton-Raphson method
xn1 =X (2—xi 1) oD

considering the initial approximate value of x as xo = 0.055 and given n = |8
x1 = 0.055 [2 - (0.055) (18)]
x = 0.0555
x; =0.0555 [2-0.0555 = 18]
a2 = (0.0555) (1.001)
xz2=0.0555

Hence xy = x2 = 0.0555

. The reciprocal of 18 is 0L0555

7. Find a real root for x tan x +1 = 0 using Newton-Raphson method ~ [JNTU 2006]
Solution

Givenf(x)=xtanx+ 1=10
Flix)=xsec?x + tanx
f2)=2tan2+ | = 3370079 < 0
f(3)=2tan3+ 1 =-0.572370>0

2. The root hies between 2 and 3

Take o= E =25 (average of 2 and 3)

2
By Newton-Raphson method

g sl

L)
X =x (.ﬂxn] 1
e lk.?,.__. ) )
o _ys (036755)
; 3.14808

x; =2.77558
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flx) |
T
F(x1) =—0.06383, Fi(x1)= 2.80004
(—0.06353)
280004

X2

=x1

Lo 2. 77558 -

x2=2.798
[(x2) == 0.001080, S (x2) = 2.7983

= L) = 579g [20001080]
1) 2.7983

xy = 2.798.

2=

. The real root of x tanx + 1 =0 is 2.798
8.  Find arootofe® sinx = | using Newton-Raphson method  [INTU 2006]

Solution
Givenf(x)=e'sinx—-1=0
fl(x)=e"secx+excosx
Take xr=0, 0 =1

SO =flx)=e’sin0-1==1<0

S =f(x)=e'sin(1)-1=1.287>0
The root of the equation lies between () and |
Using Newton-Raphson method

Jx)

)

Now consider xo = average of ( and |

_ 140
Iu—_.z_ ={.5

Xg = 0.5
flxo)y=¢e" sin (0.5) - 1
I (x0) = €" sin (0.5) + &"* cos (0.5)=2.2373

S(%) _p5_ (£0:20956)
S(x,) 2.2373

X1 = Xo—
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x =0.5936
S} =" qin (0.5936) - | = 0.0128
S () = "% 51 (0.5936) + €' cos (0.5936) = 2.5136
-y LB 5936 00128)
Sx) 2.5136
x2 = 0.58854
P o Slx))
similarly X3i=x— m
Slx2) = "5 5in (0.58854) — 1 = 0.0000181
S (x2) = "5 gin (0.58854) + ™55 cos (0.58854)
flx2) = 24983
13 = 0.58854 - SO00IEL
2.4983
13 = (.5885
xz—x3 = (.5885
(.5885 1s the root of the equation " sinx - 1 =0
9. Find a real root of the equation xe* - cos x = ) using Newton-Raphson method
[INTU-2006]
Solution

Givenfix)=e¢'—cosx=10
Jlx)=xc+e +sinx=(x+ 1) +sinx

Take Fl=0-cos=-1<0
flly=e—cos51=2.1779>0

The root hies between 0 and |

Let T ﬂ_;i =5 (average of 0 and 1)
Newton-Raphson method
a5
J&) —gs_ (=0.053221)

Xi+ 1 =Xo— jﬂ{x'}} (!I?IS.}&&}
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a1 =0.5310
£(x1) = 0.040734, (1) = 3.110063
0.040734
o= xy— L) =05310- 0%
S(x) 3110064
x:=0.5179;  fix:)=0.0004339, S x2) = 3.0428504
.+ 05179 (0:0004339)
x 3.0428504
x:=05177
S(x3) = 0.000001 106
flxs) = 3.04214
. SN £(x,) — 05177 0.000001 106
f(x;) 3.04212
xs =0.5177
13 =x4=035177
- The root of xe* —cos x = 0is 0.5177
10. Find a root of the equation x* — x — 10 = 0 using Bisection method correct to
2 decimal places. [INTU 2008]

Solution

Let f{x) = x* — x — 10 = 0 be the given equation. We observe that f{1) < 0, then f{2) >0.
So one root lies between 1 and 2.

Letxo=1,x=2;

Take x2= x";rx' 2 1.5; F(1.5)<0;

The root lies between 1.5 and 2
1.5+2
Let us take xs = - - 1.75; we find that f(1.75) <0,
The root lies between 1.75 and 2

1.75+1.875
So we take now x4 & T = 1.8125 = 1.81 can be taken as the root of the

given equation.
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11, Find a real root of equation x* — x — 11 =0 by Bisection method. [JNTU-2007]
Solution

Given equation is f(x) =x'—x-11=0
We observe that f(2)=-5<0and f(3)=13=0.

oA root of (1) lies between 2 and 3; take xp= 2, x = 3;

+
Letx:= Yoth &3 =35 Since f(2.5) = 0, the root lies between 2 and 2.5
) 2
2425
Taking x3 = =2.25, we note that /(2.25) < 0;
2
The root can be taken as lying between 2.25 and 2.5.
The toot= 222423 22375
2
12.  Find a real root of x* — 5x + 3 = 0 using Bisection method. [INTU-2007]
Solution

Let f(x) = x*— 5% + 3 = 0 be the equation given

Since f(1)=-1<0and/(2)= 1 =0, a real root lies between | and 2.

12 5. 08=1125<0

e, w=l,xr=2; take =
The root lies between 1.5 and 2;

I.5+2=”rj

Take x3 =

Now  f(1.75)= {-”3 r(.ﬂ ve;
.

The root lies between 1.75 and 2

1.75+2
Let T 3 = 1.875;

We find that {1.875) = (1.875)* — 5(1.875)+ 3 >0
The root of the given equation lies between 1.75 and 1.875

The root = g =1.813
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13. Find a real root of the equation x* — 6x — 4 = 0 by Bisection method [INTU-2006]

Solution
Here f(x)=x*—6x—4

Takexy=2,x1=13; ( f2=0.1(3)=0)
x =25 flx ) <0; slng === T mygs
1 1 3
2
254275
£(2.75)>0 = W= =262
(2.625)<0 = Riootlies between 2.625 and 2.75
Approximately the root will be = M =269
2
Objective Type Questions

1. Choose correct answer:

1. An example of an algebraic equation is

{1} tanx=¢" (2) x=logx (3) x¥*-5x+3=0 (4) None
|Ans:(3)]
2. An example of a transcendental equation is
(1) P<2x-10=0 (2) Pex=5
(3) ¥*+1llx-1=0 i4) Mone
[Ans: (2)]
3. In finding a real root of the equation x* — x — 10 = 0 by bisection, if the root lies
between xo = 2 and x; = 3, then, xz =
(1) 2.5 (2) 2.75 (3) 2.60 (4) None
[Ans: (1)]

4, If ¢ (a) and dib) arc of opposite signs and the real root of the equation ¢ (x) = 0 is
found by false position method, the first approximation x, of the root is

() ap(b)+bdla) 2 ad'(b)+b d'a)
0(b) +d(a) o(b) +é(a)

(3) abdla) dlbH) 0 aglb)-bola)
#(a)-o(b) #(b) - d(a)

|Ans: (4)]
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5. The two initial values of the roots of the equation x* — x — 3 =0 are
(1) 1.0 (2) L2 (3) 21 (4) (1,0)
[Ans: (2)]
6. The iteration method is said to have p™ order convergence if for any finite constant
K#0
(D) fe]=Kle,.|" @ e Klesul”
B) ex+1|<Kleo|” (4) None
[Ans: (1))
1. MNewton-Raphson method formula to find (n + 1) approximation of root of fix) = 0 is
"(x X, f(x
(n xﬂ,:x,,—“"} (2) x,r,,=—’”‘“ )
flx) f0,)
S(x,)
3 =X, — 4) N
[Ans: (3)]
K In the bisection method ey is the initial error and ey, is the error in n'™ iteration
| 1
(n _ (2) 1 (D
3 5 i4) None
[Ans: (3)]
9. Which of the following methods has linear rate of convergence
(1) Regular flase (2) Bisection
(3) Newton-Raphson (4) MNone
[Ans: (1)]
10. A non linear equation x* + x* — 1 = 0 is x = ¢(x), then the choice of §(x) for which the
iteration scheme xy = ¢ (xs-1) x0 = 1 converge is d(x)=
r 1
) (1~-x)2 2) — 3 - d) None
(1) ( ) (2) N (3) (d)

[Ans: (2)]




Math 202 Jerry L. Kazdan

Finding Square Roots Using Newton’s Method

Let A = 0 be a positive real number. We want to show that there is a real number x with
x* =A. We already know that for many real numbers, such as A = 2, there is no rational
number x with this property. Formally, let fx) := x* — A. We want to solve the equation
flx)=0.
Newton gave a useful general recipe for solving equations of the form f(x) = 0. Say we
have some approximation xx to a solution. He showed how to get a better approximation
Xk+1. It works most of the time if your approximation is close enough to the solution.
Here’'s the procedure. Go to the point (xx f(xx)) and find the tangent line. Its equation
is )

y = f(xx) +f (xx)(x — xx).

The next approximation, Xi+:, is where this tangent line crosses the x axis. Thus,

‘ ¢ £ (xx)
0 = fix) + f [x) (X — xz), that is, Xps1 = Xp — ——.
I (xx)
Applied to compute square roots, so f(x) := x* — A, this gives
1 A
Xpv1 = Xk ¥+ . (1)
2 X
From this, by simple algebra we find that
Xg+1 — X, -1 (A — x3) (2)
K41 k= 1)(* -

Pick some x, so that x> A. then equation (2) above shows that subsequent approxi-
mations X , Xz, ..., are monotone decreasing. Equation (2) then shows that the sequence
X1 = X2 = X5 = ..., is monotone decreasing and non-negative. By the monotone conver-
gence property, it thus converges to some limit x.

I claim that x* = A. Rewrite (2) as A —xi = 2xk(xt1 — ¥x) and let k — =0, Since
Xke1 — Xk — 0 and xi,is bounded, this is obvious.

We now know that A exists as a real number. then it is simple to use (1) to verify that
NrA_ 1 \{A 2, 3
X, = =" _ (xg - 2
k+1 2}* & } { }
,\Ir

Equation (3) measures the error xk.;— A. It shows that the error at the next step is the
square of the error in the previous step. Thus, if the error at some step is roughly 10 ° (so
6 decimal places), then at the next step the error is roughly 1072 {so 12 decimal places).




e
Example: To 20 decimal places, 7 = 2.6457513110645905905. Let's see what Newton's
method gives with the initial approximation x, = 3:

x, = 2.6666666666666666666 x= = 2.6458333333333333333
x4 = 2.6457513123359580052 x4 = 2.6457513110645905908

Remarkable accuracy.
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Curl Gustay Jacob Jacobi was the second
son of a successful banker in Potsdam,
Germany. After completing his secondary
schooling in Patsdam in 1821, he entered the
University of Berlin, In 1825, having been
granted a doctorate in mathematics, Jacobi.
served as a lecturer at the University of Berlin,
Then he accepted a position in mathematics ut
the University of Kanigsberg,

Jacobi's mathematical writings encom-
passed a wide variety of topics, including
elliptic functions, functions of a complex
variable, functional determinants (called
Jacobianz), differential equations, and Abelian
functions, Jacobi was the first to apply elliptic
functions to the theary of numbers, and he
was able to prove a longstanding conjecture
by Fermat that every positive integer can be

written as the sum of four perfect squares.
(For instance, 10 = 17 + 1* + 22 + 21)He
also contributed to several branches of mathe-
matical physics, including dynamics, celestial
mechanics, and fluid dynamics,

In spite of his contributions to applicd
mathematics, Jacobi did not believe that math-
ematical research needed 1o be justified by its
applicability. He stated that the sole end of
scicnee and mathematics is “the honor of the
human mind” and that ~a gquestion about
numbers 15 worth as much as a question about
the system of the world.”

Jazobiwas such an incessant worker that in
1542 his health failed and he retired 1o Berlin,
By the time of his death in 1851, he had
become one of the most famous mathemati-
cians in Europe.

10,1 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

In Chapter | two methods for solving a system of n linear equations in n variables were
discussed. When either of these methods (Gaussian elimination and Gauss-lordan elimina-
tion) is used with a digital computer, the computer introduces a problem that has not yet

been discussed— rounding error.

Diigital computers store real numbers in floating point form,

+M = 1F,

where £ is an integer and the mantissa M satisfies the inequality 0.1 < M < 1. For
instance, the floating point forms of some real numbers are as follows.

Real Nurnher Firmaliee Pafnt Feoem

527 0.527 x 10°
—3.81623 —0.381623 = 10!
0.00045 0.45 % 10

570
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The number of decimal places that can be stored in the mantissa depends on the computer.
If i places are stored, then it is said that the computer stores i significant digits. Additional
digits are either truncated or rounded off. When a number is truncated to n significant
digits, all digits after the first # significant digits are simply omitted. For instance, truncated
to two significant digits, the number 0.1251 becomes 0.12.

When a number is rounded to » significant digits, the last retained digit is increased by
one if the discarded portion is greater than half a digit, and the last retained digit is not
changed if the discarded portion is less than half a digit. For instance, rounded to two sig-
nmificant digits, 0.125]1 becomes (.13 and (.1249 becomes (.12. For the special case in
which the discarded portion is precisely half a digit, round so that the last retained digit is
even. So, rounded to two significant digits, 0.125 becomes (.12 and 0.135 becomes (1. 14.

Whenever the computer truncates or rounds, a rounding error that can affect subsequent
calculations is introduced. The result after rounding or truncating is called the stored value.

EXAMPLE 1 Finding the Stored Value of Number
Determine the stored value of each of the following real numbers in a computer that rounds
to three significant digits.
ia) 54.7 (b) 0.1134 (c) —8.2256
(d) 0.08335 (c) 0.08345
Solution Number Floating Point Form Stored Value
(a) 54.7 0.547 = 1P 0.547 = (¥
(b) 0.1134 0.1134 = 10° 0.113 = 10°
{c) —8.2256 —0.82256 = 10! —(.823 = 100
(d) 0.08335 0.8335 = 10! 0.834 = 10!
(e) 0.08345 0.8345 = 10~! 0.834 = 107!
Note in parts (d) and (e) that when the discarded portion of a decimal is precisely half a
digit, the number is rounded so that the stored value ends in an even digit.
REMAREK: Most computers store numbers in binary form (base two) rather than decimal
form (base ten). Because rounding oceurs in both systems, however, this discussion will be
restricted to the more familiar base ten.
Rounding error tends to propagate as the number of arithmetic operations increases. This
phenomenon is illustrated in the following example.
EXAMPLE 2  Propagation of Rounding Error

Evaluate the determinant of the matrix
4= [0.12 ﬂ.23]
0.12 0121
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when rounding each intermediate calculation to two significant digits. Then find the exact
solution and compare the two results.

Rounding each intermediate calculation to two significant digits, produces the following.
41 = (0.02)(0.12) — (0.12)0.23)
= (L0144 — 0.0276

= 0.014— 0.028
= —0.014

Round to two sipnificant digits

However, the exact solution is
[4I = 0.0144 — 00276
= —.0132,

Sa, to two significant digits, the correct solution is —({L013. Note that the rounded solution
i5 not correct to two significant digits, even though cach arithmetic operation was performed
with two significant digits of accuracy. This is what is meant when it is said that arithmetic
operations tend to propagate rounding error,

TECHNOLOGY
NOTE

Y ou can see the effect of round-

ing on a calculator. For example,

the determinant of

=

is —4. However, the TI-86
calculates the greatest integer
of the determinant of A 1o be
—5uint det A = —35. Do you
see what happened?

EXAMPLE

In Example 2, rounding at the intermediate steps introduced a rounding error of
—0.0132 — (—0.014) = 0.0008,

Although this error may seem slight, it represents a percentage error of

0,0008
QO008 _ 0061 = 6.1%.

0.0132

Riuounding vrrr

?l‘l‘t‘l‘lilﬁj:t‘ error

In most practical applications, a percentage error of this magnitude would be intolerable.
Keep in mind that this particular percentage error arose with only a few arithmetic steps.
When the number of arithmetic steps increases, the likelihood of a large percentage error
also increases,

Gaussian Elimination with Partial Pivoting

For large systems of linear equations, Gaussian elimination ¢an involve hundreds of arith-
metic computations, each of which can produce rounding error, The following straightfor-
ward example illustrates the potential magnitude of the problem.

Gaussian Elimination and Rounding Error
Use Gaussian elimination to solve the following system.

0.143x, + 0.3576: + 201y = —5.173
—1.31x; + 091 1x; + 1.99x; = —5.458
11.2x, — 4300 — 0.605x, = 4415

]

After each intermediate calculation, round the result to three significant digits.
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following.
e D143 D357 201 =517
—-1.31 0911 1.9 =544
L 112 =430 —0.605 4,424
e 10O 250 141 0 -—362 - ——
=131 0911 199 =546
L 112 =430 —0.605 4,424
e 100 2.50 14.1 =362
(.00 4.19 20.5 —52.9‘ g—
» 1L2 =430 —0605 442
P OO 250 141 —362
000 419 205 “52.9‘
00 —323 —159. 409 ——
100 250 141 =2
[ 0.00 1.0 489 —Ilﬂ B i
0,00 =323 —139. 409
250 141
[ g 100 489 —pEG
000 000 —1.00 2.00 o
1.00 250 141 —36.2
[ 1,00 1.00 4.89 —126 1
(.00 0.00 .00 =200 e

Solution Applying Gaussian elimination to the augmented matrix for this system produces the

Dividing the first row
by 0.143 produces o
new firs row.

Addiog 1.31 times the
First row 1o the second row

produces @ new seeomd row,

Addiag —I1 1.2 times the
Tiest row fo the thind row

produces s new third row,

iy iifing the second row
by 19 produces a pew
st ra,

Adding 32.3 times the
sepond row to the third row

produces a new third row,

Multiplying thy third rmow
by —I produces a new

third rew.,

Soxy= —2.00, and using back-substitution, you can obtainx; = —2.82 and x, = —0.950.
Try checking this “solution™ in the original system of equations to sce that it is not cor-
rect. ( The correct solution is x; = Lxs = 2Land xy = —3.)

What went wrong with the Gaussian elimination proeedure used in Example 37 Clearly,
rounding error propagated to such an extent that the final “solution™ became hopelessly
inaccurate.

Part of the problem is that the original augmented matrix contains entries that differ in
orders of magnitude. For instance, the first column of the matrix

143 0357 200 -5.17
=131 0911 199 =546
1.2 =430 =0.605 442

has eniries that increase roughly by powers of ten as one moves down the column. In
subsequent elementary row operations, the first row was multiplied by 1.31 and —11.2 and
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Gaussian Elimination
with Partial Pivoting

EXAMPLE 4

Solution

the second row was multiplied by 32.3. When floating point anithmetic is used, such large
row multipliers tend to propagate rounding error. This type of error propagation can be less-
ened by appropriate row interchanges that produce smaller multipliers. One method for re-
stricting the size of the multipliers is called Gaussian elimination with partial pivoting.

1. Find the entry in the lefi column with the largest absolute value. This entry is called
the pivot.

2. Perform a row interchange, if necessary, so that the pivot is in the first row,

3. Divide the first row by the pivot. (This step is unnecessary if the pivet is 1)

4. Use clementary row operations to reduce the remaining entries in the first column to
Zero,

The completion of these four steps is called a pass. After performing the first pass,

ignore the first row and first column and repeat the four steps on the remaining subma-

trix. Continue this process until the matnix is in row-echelon form.

Example 4 shows what happens when this partial pivoting technigque is used on the
system of linear equations given in Example 3.

Gaussian Elimination with Partial Pivoting

Use Gaussian elimination with partial pivoting to solve the system of linear cquations given
in Example 3. After each intermediate calculation, round the result 1o three significam
digits.

As in Example 3; the augmented matrix for this system 15

0.143 0357 201 —5§
=131 0811 1.99 —35.446|.
112 =430 —0.605 442

Pivar

In the left column 11.2 is the pivot because it is the entry that has the largest absolute value.
So, interchange the first and third rows and apply elementary row operations as follows.
e 112 =430 —0.605 4.4 -s—  laterchampe the
—1.31 0911 1.99 —544 first and ihird
L (.143 0.357 201 =517 | EES

b 112 produces o new

=1.31 0911 1.99 =5,
L 0143 0357 201 -3

o 100 —0.384 —0.0540 ﬂ}gjﬂ == [hividing the lirst row

Mirst row,
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1.0 —0384 —0.0540 0.395 Adding 131 times the first
(.00 (0408 1.92 —494 g row 10 the second row
0.143 0.357 2001 =517 proadices u new second row,
—0.384 —0.0540 Adlding —0.143 times the
r [‘m 0.408 1.92 'DM 1 first vow to the third row
0.00 0412 202 =523 g produces u new third row,

This completes the first pass. For the second pass consider the submatrix formed by delet-
ing the first row and first column. In this matrix the pivot is 0.412, which means that the
sccond and third rows should be interchanged. Then proceed with Gaussian elimination as
follows.

Piver

i
“0'33’4;"" —0.0340 Interchange the
I {j&] (0412 2.02 -ﬂﬁ?j "' . geconi] and thind
000 0408 .92 —494 = TOWN
e LD —0334 —0.0540 (0.395, Dividing the second row
0,00 L.00 490 —12.3 g by (AL 2 produces o new
L 00D 0.408 192 —4.944 sncamd riw.
e 1000 —0384 —0.0540 0.395; Aeleding —0. 408 tisies the
0.00 1.00 490 =127 secnnd row 1o The third row
L 0.0 {]:(]I_'] —0.0800  0.2404 g prodduces a new thivd row,

This completes the second pass, and you can complete the entire procedure by dividing
the third row by —0.0800 as follows.

—0.384 —0.0540 Dividing the third row
r U'liﬁ 1.00 4.90 .ﬂ% 1 by —{LOS00 produces i
0.00 0.00 LoD —3.00 g fiow third row.

Soxy = —3.00, and back-substitution produces x2 = 2,00 and x; = 1.00, which agrees
with the exact solution of x; = |, 32 = 2, and x3 = —3 when rounded to three significant
digits.

REMARK: Note that the row multipliers used in' Example 4 are .31, —0.143, and
—(.408, as contrasted with the multipliers of 1.31, 11.2, and 32.3 encountered in Example 3,

The term partial in partial pivoting refers to the fact that in each pivot search only entries
in the left colurn of the matrix or submatrix are considered. This search can be extended
to include every eniry in the coefficient matrix or submairix; the resulting technique is
called Gaussian elimination with complete pivoting. Unfortunately, neither complete
pivoting nor partial pivoting solves all problems of rounding error. Some systems of linear
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EXAMPLE 5

Solution

equations. called ill-conditioned systems, are extremely sensitive to numerical errors. For
such systems, pivoting 1s not much help. A common type of system of hinear equations that
tends to be ill-conditioned is one for which the determinant of the coefficient matrix is
nearly zero. The next example illusirates this problem.

An H-Conditioned System of Linear Equations

Use Gaussian elimination to solve the following system of linear equations.
X+ y= 0

:r+&‘l'v=2ﬂ

400
Round each mtermediate calculation to four significant digits.
Using Gaussian elimination with rational arithmetic, you can find the exact solution to be

¥ =8000 and x = —8000. But rounding 401/400 = 1.0025 to four significant digits
introduces a large rounding error, as follows.

L 1 07
| Looz 20
i 1 07
L0 0002 20
L (17
L0 100 10,000

Soy = 10,000 and back-substitution produces
x=—y
= —10.,000.

This “solution” represents a percentage error of 25% for both the x-value and the y-value.
MNote that this error was caused by a rounding error of only 0.0003 {when you rounded
1LOGZS5 1o 1.002).
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SECTION 10.1 ) EXERCISES
In Exercises 1-8, express the real number in floating point torm.

1. 4281 2. 32161 3. =162 4. —21.001
5 —000121 6, 000026 1.3 8. 16k

In Exercises 9-16, determine the stored value of the real number in
a computer that rounds to (a) three significant digits and (b} four

stgmificant digits.
9. 331 10. 21.4 11, —92.646 12, 216964
13. © i - 12 * 16.

I i :

In Exercises |7 and 18, evaluate the determinant of the matrix,

roumding each imermediate calculation to three significant digits.
Then compare the rounded value with the exact solution,

1.24 5600 15, [2,12 4712
“leson 1oz 107 212

In Exercises 19 and 20, use Gaussian climinstion to solve the

system of linesr cquations. After cach intermediate calculation,

round the result to three significant digits. Then compare this solu-
tion with the exact solution.

120y + 167y = 288 20, 144x—IEly= 3135
4.66x + 644y = 111.0 Blbe— 97.4y= 179.0

5 In Exercises 21-24, use Gaussian elimination without partial pivot-
ing to solve the system of lincar eguations, rounding 1o three
significant digits after cach imtermediate calculation. Then use
partial pivoring 1o solve the same sysiem, again rounding to three
significant digits after each intermediate calculation. Finally, com-
pare hoth solutions with the given exact solution.

x4+ LMy = 2.4 22 U5 + 926y = 9.7

Gr + 6.20p = [2.20 99.00x — 449.0p = 541.0
(Exactx= 1,y = 1} (Bxact:x= 10,3 = 1)
23 x+ 400y + 000445 = 000
—x— 4,00y + 000600z = .21
2x — 4.05y + 0.05000z = —0,385
(Exact:x = —0.49,y = 0.1.2 = 20)
24, 0.007x + 61.20v +0.093: = 613
4810 — 592+ 1110z= 00
R1A00x + 112y 4+ 1.180= =837
(Exactr=1,y=1,z=1]

SECTION 101 EXERCISES

In Exercizes 25 and 26, use Gaussian elimination o solve the
ill-conditioned system of linear equations, rounding each intermedi-
ate caleulation to three significant digits. Then compare this solu-
tion with the given exact solution.

5x4+ y=1 2% x—{jifyr=10
2+ My =20 —x+ y=350
(Exact:x = 10,820, (Exact: x = 48,010,
y==10818}) ¥ = 48,060)

27. Consider the ill-conditioned systems
A ¥y=21 ad x+ y=12
X+ 10001y =2 x + L0001y = 2.0001.

Caleulate the solution to each system. Notice that although the
systems are almost the same, their solutions differ greatly.

28, Repeat Exercise 27 for the systems
xXx—=y=10 and x—y=0

—1.001x + y = 0L0D] —L0x+y=0

29. The Hilbert matrix of size # = n is the & = o symmetnc
matrix i, = [a,,], where a, = I,.I'l:i +f— 1). As n increnses,
the Hilbert matrix becomes more and more ill-conditioned.
Lise Gaussian elimination to solve the following system of
linear equations, rounding to two significant digits afier each
intermediate caleulation, Compare this solution with the exact
solution (i, = 3,0, = —24, and x, = 30),

-t.+4:t;+ix_., 1
+h +h =1
I 52 + 1

ot =1
0. Repeat Exercise 29 for Hx = b, where b= (1,1, 1,1},

rounding to four significant digits. Compare this solution with
the exact m!u!innﬁl =—d, = 60,0 = — 180, and x, =

140).

il

g R

&5 31. The inverse of the n = » Hilbert matrix {1, has inteper entrics.

Use your computer of graphing caleulator to calculate the

inverses of the Hilbert matrices ff, forn = 4. 5, 6, and 7. For
what values of i do the inverses appear to be accurate?




578  CHAPTER 10 NUMERICAL METHODS

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

As a numerical technique, Gaussian elimination is rather unusual because it is direct. That
is, a solution is obtained after a single application of Gaussian elimination. Once a “solu-
tion” has been obtained, Gaussian elimination offers no method of refinement. The lack of
refinements can be a problem because, as the previous section shows, Gaussian elimination
1s sensitive to rounding error.

Numerical techniques more commonly involve an iterative method, For example, in
caleulus vou probably studied Newton's iterative method for approximating the zeros of a
differentiable function. In this section you will look at two iterative methods for approxi-
mating the solution of a system of # lincar equations in i variables.

The Jacobi Method

The first iterative technique is called the Jacobi method, after Carl Gustay Jacob Jacobi
{1504-1851). This method makes two assumptions: (1) that the system given by

apxy Faps o F A= 5|

a3 X + Xy b Tl Aty = bz

X+ agxs+ cor +oaux, = b,

has a unique solution and (2) that the coeflicient matrix 4 has no zeros on its main diago-
nal. IF any of the diagonal entries g, a5, .« . . g, are zero, then rows or columns must be
interchanged to obtain a coefficient matrix that has nonzero entries on the main diagonal,

To begin the Jacobi method, solve the first equation for xi, the second equation for xz,
and so on, as follows,

X = W =a o xo—a o= a1 X))
i ay, | B2 123 In o
by =_I'__{b il Xl X ey XY
28 ol 21 213 n
=it =2 ey 18 -
¥ = —{b—agx—uax g X
[ ] a i al 1 m: 2 ma—1 =]

oy
Then make an initial approximation of the solution,
B P e Iﬁ.}. Initinl approxintion

and substitute these values of x; into the right-hand side of the rewritten equations to obtain
the first approximation. After this procedure has been completed, one iteration has been




EXAMPLE 1

Solution

SECTION 10.2  ITERATIVE METHODS FOR SOLVING LINEAR 5YSTEMS

performed. In the same way, the second approximation is formed by substituting the first
approximation’s y-values into the right-hand side of the rewritten equations. By repeated
iterations, you will form a sequence of approximations that often converges to the actual
solution. This procedure is illustrated in Example 1.

Applying the Jacobi Method
Use the Jacobi method to approximate the solution of the following system of linear
cquations.
S.T|_1T1 + 3x3= |
=i+t = 2
1.T| = LT ?.1'_1 = 3

Continue the iterations until two successive approximations are identical when rounded to
three significant digits.

To begin, write the system in the form
¥ ==l42y =3
I o w2y | 53
X = 3+3x—it
2 g §1 93
X =-—-f+ix —l.t.
1 T 7 0 |7z

Because yvou do not know the actual solution, choose
=1 xn= {0, n=I1 Initial approximation
as a convenient initial approximation. So, the first approximation is
==+ 30— Y0)=—0.200
| -] B 5

== 240y — W0y & D222
2 L] 9
-3 ;gm e TL{G} 2 —0.429,

X
.

sl s WG

Continuing this procedure, you obtain the sequence of approximations shown in Table 10.1.

TABLE 101

" ] ¥y i 4 5 [ 7
x 0000 =0200 0046 192 0181 183 0186 0186
% XL 0222 0203 0328 0332 0329 0331 0331
X 0000 —0429 —=0517 —0416 —0421 —-0424 —-0423 —0.423
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Because the last two columns in Table 10.1 are identical, you can conclude that to three
significant digits the solution 1s

o = 0.186, x = 0331, x = —0423.

EXAMPLE 2

Solution

For the system of linear equations given in Example |, the Jacobi method is said to
converge, That is, repeated iterations succeed in producing an approximation that is correct
to three significant digits. As is generally true for iterative methods, greater accuracy would
require more iterations.

The Gauss-Seidel Method

You will now look at a modification of the Jacobi method called the Gauss-Seidel method,
named after Carl Friedrich Gauss (1777-1855) and Philipp L. Seidel (1821-1896). This
modification i1s no more difficult to use than the Jacobi method, and it often requires fewer
iterations to produce the same degree of accuracy.

With the Jacobi method, the values of x; obtained in the ath approximation remain
unchanged until the entire (n + 1)th approximation has been calculated. With the Gauss-
Seidel method, on the other hand, you use the new values of each x; as soon as they are
known. That is, once you have determined x; from the first equation, its value is then used
in the second equation to obtain the new x;. Similarly, the new x; and x: are used in
the third equation to obtain the new x:, and so on. This procedure is demonstrated in
Example 2.

Applying the Gauss-Seidel Method

Use the Gauss-Seidel iteration method to approximate the solution to the system of
equations given in Example 1.

The first computation is identical to that given in Example 1. That is, using (x), x2, x3) =
(0,0, 0} as the initial approximation, you obtain the following new value for xi.
x = —! 4 0) — ¥0) = —02200
1 5 ] H]
Mow that you have a new value for x;, however, use it to compute a new value for x2. That
15,

X =
5

+ H(—0.200) — 40) = 0.156.
¥ g

g
Similarly, use x; = —0.200 and x; = 0.156 to compute a new value for xi. That is,
:r} = —; + Zi[—l]..?l]l]} — ;_{ﬂ-.] 56) = —0.508.

So the first approximation is x, = —0.200, x; = 0.156, and x: = —0.508. Continued
iterations produce the sequence of approximations shown in Table 10.2.
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TABLE 10.2

" 0 | 2 3 4 3

X, 0000 —0.200 067 0.191 g6 (186

X (. 0HMD 156 0334 (333 0331 033

x 0 —0.508 —0429 —0422 —0423 —0.423

Note that after only five iterations of the Gauss-Seidel method, you achieved the same
aceuracy as was obtained with seven iterations of the Jacobi method in Example 1,

EXAMPLE 3

Solution

Neither of the iterative methods presented in this section always converges. That is, it is
possible to apply the Jacobi method or the Gauss-Secidel method to a system of lincar equa-

tions and obtain a divergent sequence of approximations. In such cases, it is said that the
method diverges.

An Example of Divergence
Apply the Jacobi method to the system

X — 5x;,=—4

Joy — xy =00;

using the initial approximation (x),x2) = (0, 0), and show that the method diverges.

Az usual, begin by rewriting the given systentin the form
Xy - == —d + 5x3
x=—64+ Tx.

Then the initial approximation (0. 0) produces
x=—4+5(0)=—4
xi=—6+T7(0)=—6

as the first approximation. Repeated iterations produce the sequence of approximations

shown in Table 10.3.

TABLE 10.3

Il 1] | 2 3 i 5 [ T

t, T R T T T T T R g T
0 —6 =34 —244 —1244  —8574 —42874 —300124
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For this particular system of lincar equations you can determine that the actual solution
15 x1 = 1 and x> = 1. S0 you can see from Table 10.3 that the approximations given by
the Jacobi method become progressively worse instead of better. and yvou can conclude that
the method diverges.

Definition of Strictly
Diagonally Dominant
Matrix

EXAMPLE 4

The problem of divergence in Example 3 is not resolved by using the Gauss-Secidel
miethod rather than the Jacobi method. In fact, for this particular system the Gauss-Seidel
method diverges more rapidly, as shown in Table 10.4.

TABLE 10.4

n { | . K] 4 k]

X 0 TR K T8 T E124 —214374  —7.503.124
X 1] =34 =1224 =42 874 — | 5(H)624 —352.521.874

With an imitial approximation of (xi. x2) = (0. 0), neither the Jacobi method nor the
Gauss-Scidel method converges to the solution of the system of linear equations given in
Example 3. You will now look at a special tvpe of coefficient matrix 4, called a strictly
diagonally dominant matrix, for which it 15 guaranteed that both methods will converge.

Ann % nmatrix 4 is strictly diagonally dominant if the absolute value of each entry
on the main diagonal is greater than the sum of the absolute values of the other entries
in the same row. That is,

I.r]|||f-‘v‘|r]'ll|+ 'J1]3-|+ L Ialul
Iazzlf' Iﬂ'zhl 35 I"nl + o+ a, |

8 B 1 R U R e

Stricily Diagonally Dominant Mairices

Which of the following systems of linear equations has a strictly diagonally dominani
coefficient matrix?

(a) Ixj— xo=—4

E.I| -+ 51‘: = 2
(b) dx; + 22 — 13 = —1
X + 2xy = —4

3.'[; — S.T: + X = 3
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Solution (a) The coefficient matrix
|
A =
[> %]
is strictly diagonally dominant because |3| = I—II and ISI = IZI
() The coefficient matrix

4 2 -l
.-:=[| 0 2]
3 =5 1

is not strictly diagonally dominant because the entries in the second and third rows
do not conform to the definition. For instance, in the second row ay; = 1, as = 0,
iy = 2, and it 1s not true that IE.I'::I = I“zll + Iazgl. Interchanging the second and third
rows in the original system of linear equations, however, produces the coefficient matrix

4 2 r—1
A'=[3 =) 1],
1 0 7l

and this matrix is strictly diagonally dominant.

The following theorem, which is listed without proof, states that strict diagonal domi-
nance is sufficient for the convergence of either the Jacobi method or the Gauss-Seidel

method.
Theorem 10,1 If 4 is strictly diagonally dominant, then the system of linear equations given by Ax = b
C of has a unique solution to which the Jacobi method and the Gauss-Seidel method will con-
Di'l"'iEngl'lCE verge for any initial approximation.
the Jacobi and
Gauss-Seidel Methods

In Example 3 you looked at a sysiem of linear equations for which the Jacobi and Gauss-
Seidel methods diverged. In the following example you can see that by interchanging the
rows of the system given in Example 3, you can obtain a coefficient matrix that is strictly
diagonally dominant. Afier this interchange, convergenee is assured.

EXAMPLE 5 [Interchanging Rows to Obtain Convergence

Interchange the rows of the system

X — Sx, = —4

T'r.'ﬁ_ Xy = [

to obtain one with a strictly diagonally dominant coefficient matrix. Then apply the Gauss-
Seidel method to approximate the solution to four significant digits.
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Solution Begin by interchanging the two rows of the given system to obtain
?3'. - Ay = ﬁ
x—S5n=—4

Naote that the cocfficient matrix of this system is strictly diagonally dominant. Then solve
for x, and x, as follows.

x =%+l
I 7 7 2
=44k
& AR

Using the initial approximation (xi, x2) = (0, 0}, vou can obtain the sequence of approxi-
mations shown in Table 10.5.

TABLE 10.5

I ] 1 - 3 4 5

Xy 0.0000 08571 0.995%¢  0.9999 L0000 1000

X 00000 09714 09992 1,000 10000 1000

So you can conclude that the solution isxy = | and x2 = |

Do not conclude from Theorem 10.1 that strict diagonal dominance is a necessary con-
dition for convergence of the Jacobi or Gauss-Seidel methods. For instance, the coefficient
matrix oF the system

—d4x1 + 5x2
x + 2xy

1
3
1s not a strictly diagonally dominant matrix, and vet both methods converge 1o the solution

vy=1 amd x, =1 when you us¢ an initial approximation of (xy,x3) = (0,0). (See
Exercises 21-22.)

1l




X =

In Exercises |- 4, apply the Jacobi method to the given system of
linear equations, using the initial approximation (x,, xy, ... ,x,) =
{0, 0, ..., 0) Continue performing iterations until two successive
approximations are identical when rounded to three significant digits.

n=2 2, —dyi 4+ 2= —6H
x+dx, =5 i — 5= |
Y 2n—x = 2 44+ 5+ = 7

Xy ?.T; sy od ZIJ =—2
3x; +d =11
Apply the Gauss-Seidel method to Exercise |,
Apply the Gauss-Seidel method to Exercise 2.
7. Apply the Gauss-Seidel method 1o Exercise 3.
8. Apply the Gauss-Seidel method to Exercise 4.

In Exercises 9-12, show that the Gavss-Scidel method diverges for
the given system using the initial approximation (x,, xs, .0, x) =
{0.0,....0)

=3+ x==2
-1+ X 3n=—0

&

9, on—Iln=—| 10, —x + de-= |
Ix + xr= 3 iy — 2y =32
I 2 ] 2
1, 2ry— Jas = =1 1 g +3n— ou=5
o+ 3 — 10y =9 I — 5 =35
I + =13 fd 2xy=1

In Exercises 13-16, determine whether the matrix is strictly diago-

nally dominant.
2 1 | =2
B [3 i | [_0 |]
7

d

12 & 0 5 —l1
1S | & =3 2 16. [1 —4 I
0 6 I3 0§ 2=

17. Interchange the rows of the system of lincar cquations in
Exereise 9 1o obtain a system with a strictly diagonally domi-
nant cocflicient matnx. Then apply the Gauss-Seidel method
to approximite the solution to two significant digits.
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19, Interchange the rows of the system of linear equations in
Exercise 11 to oblain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

Interchange the rows of the system of linear equations in
Exercise 12 to obtain a system with a strictly diagonally dom-
inant coctficient matrix. Then apply the Gauss-Seidel method
o approximate the solution to two significant digits,

20.

In Exercises 21 and 22, the coefMicient matnix of the system of linear
equations 15 not strictly diagonally dominant. Show that the Jacobi
and Gauss-Seidel methods converge using an initial approximation
Ur{.ﬁ. ko R J.',.} = {ﬂ. 0. SR 0’]-

2dn+ e —2nn=10
=== n=7
Iy — xmtdn,=5

. —dn+ 5 =1
N+idn=3

& in Exercises 23 and 24, write a computer program that applics the
Guuss-Siedel method 1o solve the system of linear equations.

23 4:| i X = 73
.:1+ﬁr;—- 1f1+ X— X = —6
X+ Sy - Xy Xy =.=—3

2% £ Sy — %5 — k= a= D

g, e Ny Gy — ixg — = 12

—X; — xS = =12

=X + dp, = 1= =12

—— Xy —_— et Sy, = 2

Mo Aoy — 51— 5 18
—x A — o — X =14
s Tl el = 4

—x+ dx— X=X = 4
—5+ = = N =26
=t dr,— = xn=16

—x+ d— =10
—xr+ dxp = 32

I8, Interchange the rows of the system of lincar equations. in
Exercise 10 to obtain a system with a strictly diagonally dom-
inant cocfficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits,
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Definition of Dominant
Eigenvalue and
Dominant Eigenvector

EXAMPLE 1

Solution

10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES

In Chapter 7 you saw that the eigenvalues of an 1 > n matrix 4 are obtained by solving its
characteristic equation

Aar L CH_IA"_I + CN—ZA"-J + - F Cp = 0.-

For large values of n, polynomial equations like this one are difficult and time-consuming
to solve. Moreover, numerical techniques for approximating roots of polynomial equations
of high degree are sensitive to rounding errors. In this section you will look at an alterna-
tive method for approximating eigenvalues. As presented here, the method can be used only
to find the eigenvalue of A that 1s largest in absolute value—this eigenvalue is called the
dominant eigenvalue of 4. Although this restriction may seem severe, dominant eigenval-
ues are of primary interest in many physical applications.

Let A, A, ..., and A, be the cigenvalues of an # = n matrix 4. A, is called the
dominant eigenvalue of 4 if

Wl=ll i=2....n

The eigenvectors corresponding to Ay are called dominant eigenvectors of 4.

Mot every matrix has a dominant eigenvalue. For instance, the matrix
| {
=R g
0 -1
(with eigenvalues of A; = | and Az = —1) has no dominant eigenvalue. Similarly, the
matrix

2.0
A= ’ﬂ 2 ;]
0o 0 |
(with eigenvalues of A1 = 2, A2 = 2, and A5 = 1) has no dominant eigenvalue.

Finding a Dominant Eigenvalue
Find the dominant eigenvalue and corresponding eigenvectors of the matrix
=+ _
A = [ 12].
1 -5
From Example 4 of Section 7.1 you know that the characteristic polynomial of 4 is
A2+ 34+ 2 =(A+ 1)(A +2). So the cigenvalues of 4 are Ay = — 1 and Az = —2, of

which the dominant one is A2 = —2. From the same example you know that the dominant
eigenvectors of A (those corresponding toAz = —2) are of the form

X =f[3]], tCQ.




EXAMPLE 2

Solution
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The Power Method

Like the Jacobi and Gauss-Seidel methods, the power method for approximating cigenval-
ues is iterative. First assume that the matrix 4 has a dominamt eigenvalue with correspond-
ing dominant eigenvectors. Then choose an initial approximation xo of one of the dominant
eigenvectors of 4. This initial approximation must be a nenzero vector in R". Finally. form
the sequence given by

Xi = A%,
Xy =Ax = A(Ax) = 47x,
X1 =-‘1‘13=A(—42!u_}=f4&u

xt-:."ilk_. =A{A*"'!§.;} = .‘I“x[..

For large powers of &, and by properly scaling this sequence, you will see that you obtain
a good approximation of the dominant eigenvector of 4. This procedure is illustrated in
Example 2.

Approximating a Dominani Eigenvector by the Power Method

Complete six iterations of the power method to approximate a dominant eigenvector of

g

Begin with an initial nonzero approximation of

[

Then obtain the following approximations.

jhﬂ'nm: Sealed Approxaniation

X =dx = i F —10 i 2.50

S L rle— Tl - L1.00d

x =dx = £ =15 "y 2% 10 &M

f 0 L =5l 4] ued == Liood

X = Adx = £« —is 23 ""M —_—g L

3 4 L] = e

r =ax =5 —=slbiol "l 4(_[;4191

U gllpl L Ll

C 4 L osioed T ~  L1ood
X = x = & Ti& —280 l _.J%J (L) =

e LTSN g =|.|Qﬂ.] e Li.00d
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Theorem 10.2

Determining an Eigenvalue
from an Eigenvector

Proof

Note that the approximations in Example 2 appear to be approaching scalar multiples of

[}]
aL
which you know from Example 1 is a dominant eigenvector of the matrix
2 =
A = [ ]z]r
1 =5
In Example 2 the power method was used to approximate a dominant eigenvector of the
matrix 4. In that example you already knew that the dominant cigenvalue of 4 was
A = =2, For the sake of demonstration, however, assume that yvou do not know the domi-
nant eigenvalue of 4. The following theorem provides a formula for determining the eigen-

value corresponding to a given eigenvector. This theorem is credited to the English physi-
cist John William Rayleigh (1842-1919).

If x is an eigenvector of a matrix 4, then its corresponding eigenvalue is given by

This quotient is called the Rayleigh quotient.

Because x is an eigenvector of A, you know that 4x = Ax and can write

A*J:-:L_)ut—x_}{xnm}_;l
XX X-x XX )

EXAMPLE 3

Solution

In cases for which the power method gencrates a good approximation of a dominant
eigenvector, the Rayleigh quotient provides a correspondingly good approximation of the
dominant eigenvalue. The use of the Rayleigh quotient is demonstrated in Example 3.

Approximating a Dominant Eigenvalue

Use the result of Example 2 to approximate the dominant eigenvalue of the matrix

? —12
A=[1 _5].

After the sixth iteration nf'tthmwer method in Example 2, obtained
568 o~ qop 2.9

"' . [190] [l.m]

With x = {2.99, 1) as the approximation of a dominant eigenvector of A, use the Ravleigh
quotient to obiain an approximation of the dominant eigenvalue of 4. First compute the
product Ax.
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7 =129 2997 _ r—6.02
=[]
1 =5 L00 =201
Then, because
Ax - x = (—6.02)(2.99) + (—=2.01)(1) = —20.0
and
x-x={299)(299) + (1)) = 994,
you can compute the Rayleigh quotient to be
Ax-x =200, 54

1+x~ g94

A=

which is a good approximation of the dominant eigenvalue A = —2.

EXAMPLE 4

Solution

From Example 2 you can see that the power method tends to produce approximations
with large entries. In practice it is best to “scale down™ each approximation before pro-
ceeding to the next tteration. One way to accomplish this sealing 15 o determine the com-
ponent of 4x, that has the largest absolute value and multiply the vector Ax, by the
reciprocal of this component. The resulting vector will then have components whose
absolute values are less than or equal to 1. {Other scaling techniques are possible. For
examples, see Exercises 27 and 28.)

The Power Method with Scaling

Caltulate seven iterations of the power method with scaling o approximate a dominant
eigenvector of the matrix

I 2 ]
A= [—-—2 1 2].
1 3 |

Use xq = (1, 1, 1) as the initial approximation.

One iteration of the power method produces

M

and by scaling you obtain the approximation

3v 0 p0.60
X, = %[ |] = u.zu].
5

L0
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A second iteration yields

r | 2 -l rﬂﬁﬂ-l r-] U‘U-—I
Axp= —2 | 0.20 = 1.00
| i | 1.060) 2.20

,=—— I{lﬂ] r
22{}220 1

Continuing this process, you obtain the sequence of approximations shown in Table 1006,

TABLE 10.6

ri by (bl péiky (dilq [diy ity O3]

From Table 10.6 you can approximate a dominant eigenvector of 4 to be

[

Using the Ravleigh quotient, you can approximate the dominant cigenvalue of 4 to be
A = 3. (For this example you can check that the approximations of x and A are exact.)

Theorem 10.3

Convergence of the
Power Method

REMARE: MNotethat the scaling faciors used to obtain the vectors in Table 10.6,
Xy LT L} 1, ¥ Ll

5.00 2.20 2.82 K .02 2949 3.00,
are approaching the dominant eigenvalue A = 3.
In Example 4 the power method with scaling converges to a dominant eigenvector. The

following theorem states that a sufficient condition for convergence of the power method is
that the matrix A be diagonalizable (and have a dominant eigenvalue).

If 4 is an m = n diagonalizable matrix with a dominant eigenvalue, then there exists a
nonzero veetor xg such that the sequence of vectors given by

Axg, Ay A%y AEs e ARG s
approaches a multiple of the dominant eigenvector of 4.
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Proof Because 4 is diagonalizable, you know from Theorem 7.5 that it has » linearly independent
eigenvectons Xy, Xa. . . . , X, with corresponding eigenvalues of Ay, A, . .., An Assume that
these cigenvalues are ordered so that A is the dominant cigenvalue {with a corresponding
eigenvecior of x;). Because the n eigenvectors X, Xz, .. .. x, are linearly independent, they
must form a basis for R". For the initial approximation xo, choose a nonzero vector such
that the linear combination

Xpg =X + CaXa A o . 5

has nonzero leading coefficients, (If ¢y = 0, the power method may not converge, and a
different xo must be used as the initial approximation. See Exercises 21 and 22.) Now,
multiplying both sides of this equation by A produces

Axg = Al + ca%a + 7+ -+ CX,)
=g (Ax,) # e(Ax) + -+ o (Ax,)
= o Aix; ) # o Aexs) + - -+ + g (Aux,).
Repeated multiplication of both sides of this equation by A produces
Abxg = ¢ (A'x) + eAgfxg) + oo+ e (A,tx,),

which implies H:T LAES )‘ ,( 1 'r-l
A i :" g

2
Ang= AL e x +¢ Az A e
1 |

Mow, from the original assumption that A1 1s larger in absolute value than the other cigen-
values it follows that cach of the fractions

A A,
AVAT TR

is less than | in absolute value. So each of the factors

G ) @)

must approach 0 as k approaches infinity. This implies that the approximation
.‘1*3&*1&#5'11:]. oy co
improves as & increases. Because X 15 a dominant eigenvector, it follows that any scalar

multiple of x; 15 also a dominant eigenvector, so showing that 4% approaches a multiple
of the dominant eigenvector of A.

The proof of Theorem 10.3 provides some insight into the rate of convergence of the
power method. That is, if the eigenvalues of A are ordered so that

Wil=hl=hl=...=la]
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EXAMPLE 5

then the power method will converge quickly if I;_:'" I;_II is small, and slowly if
I’lzlfh.I isclose to 1. This principle is illustrated in Example 3.

The Rate of Convergence of the Power Method
{a) The matrix
4 5
A=
[¢
has cigenvalues of A =10 and Az = — 1. So the ratio JA2W1A,] is 0.1. For this matrix,

only four iterations are required to obtain successive approximations that agree when
rounded to three significant digits. (See Table 10.7.)

TABLE 10,7

X, X X X X
I A8 (B35 1833 833
[Im I.IIHJ] [I.lJl:II(III LDM] [t:mﬂ
(b} The matrix
4 IU]
A=
[-73
has eigenvalues of Ay = 10 and A» = —9. For this matrix, the ratio |)ﬂlf IA,l is 0.9,

and the power method does not produce successive approximations that agree to three
significant digits until sixty-eight iterations have been performed, as shown in Table 10.8.

TABLE 10.5

X X X3 P iy X,
LOOD 0500 0941 - - 0715 0714 0714
Liooo] Liooo] Liooo] - - - Lroood Liooo] Lioood

In this section you have seen the use of the power method to approximate the dominant
eigenvalue of a matrix. This method can be modified to approximate other eigenvalues
through use of a procedure called deflation. Morcover, the power method is only one of
several techniques that can be used to approximate the eigenvalues of a matrix. Another
popular method is called the QR algorithm.

This is the method used in most computer programs and caleulators for finding eigen-
values and eigenvectors. The algorithm uses the (PR-factorization of the matrix, as pre-
sented in Chapter 5. Discussions of the deflavion method and the QR algorithm can be
found in most texts on numerical methods.
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In Exercises 1-6, use the techniques presented in Chapter 7 to find
the eigenvalues of the matrix A. 114 has a dominant ejgenvalue, find
a corresponding dominant eigenvector,

3

1. .-|=[z ._4] 1, .-|=[_I [;]

1
I =5 4 =5

5 A= [_3

2 3 1 =5 0
=0 =1 [3 }.A: 3 ?[ 0 '1
¢ 0o 3 4 =2 3

In Exercises 7-10, use the Rayleigh quotient to compute the gigen-
value A of 4 corresponding 1o the eigenveclor x.

7. 4= ['; ,:;]; ;[z] Ia. e [f i].xr [_I]
9.;=r—2

—b
3

m.a=r:f* =3 3]"‘“[?]

A In Exercises |1-14, use the power method with scaling to approxi-
mate 1 dominant cigenvector of the matrix 4. Start with xp = (1,1}
and caleulate five iterations. Then use xs.to approximate the domi-

[ E- A
|
fad
LT

nant eigenvalue of 4.

1. .4=[‘:; _'] 12. .-!=[_: {;]

|3“:r=[_2 E’] j]

&5 In Exercises 15-18, use the power method with scaling to approxi-
mate a dominant ¢igenvector of the matrix 4. Start with
xo = (1, 1, 1} and caleulate four iterations. Then use x4 to approxi-
mate the dominant eigenvalue of 4.

3 0 0 1 2
I5..—!=[I -1 0f 16. 4= 0 —?[ I
] ]

0 2 ]

1¢A=[_f ’

| |
1. 4= 3 =1 1] 0 A=
0 0 =2
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Bl In Exercises 19 and 20, the matrix 4 does not have & dominant
eigenvalue, Apply the power method with scaling. starting with
xo = (1. 1, 1), and observe the results of the first four iterations,

1 2 =2
-2 5 =2
-0 6 =3
21. Writing (a) Find the eigenvalues and comresponding eigen-
viectors of

3 -
a=| ]],
-2 4
(b} Calculate two iterations of the power method with scaling,
starting with xy = (1, 1).

{e) Explain why the method does not seem to converge o a
dominant cigenvector.
22. Writing Repeat Exercise 21 using xa = (1, 1, 1), for the

T b

45123, The mairix
e [2 =18
By —5
has a dominant eigenvalue of A = —2, Observe that Ax =Ax

implics that

1

Ax = 1 X.

Apply five iterations of the power method (with scaling) on
A~ to compute the eigenvalue of A with the smallest magni-
tude.

& 24. Repeat Exercise 23 for the matrix

2 A 1
A= [i]l —1 2].
0 0 3
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ﬁi" 25, (a) Compute the eigenvalues of

,4=[*]" ;] aid 3:[‘? :]

(k) Apply four iterations of the power method with scaling to
each matrix in part (a), starting with x, = (=1, 2)

{c) Compuie the ratiosA: /4 for 4 and #. For which do you
expect faster convergence?

Use the proof of Theorem 10.3 to show that

Al %) = A A',)

for large values of k. That is, show that the scale factors ob-
tained in the power method approach the dominum eigenvalue,

S In Fxercises 27 and 28, apply four iterations of the power methad
{with scaling) to approximate the dominant cigenvalue of the
matrix. After cach iteration, scale the approximation by dividing by
its length 5o that the resulting approximation will be a unit vector.

2. A=[: ;’] B A= 16 —9[ ?ﬁ_d 2]

g -4 5
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Regression Analysis
for Polynomials

10.4 APPLICATIONS OF NUMERICAL METHODS

Applications of Gaussian Elimination with Pivoting

In Section 2.5 you used least squares regression analysis to find lrear mathematical models
that best fit a set of # points in the plane. This procedure can be extended to cover polyno-
mial models of any degree as follows,

The least squares regression polynomial of degree m for the points {(x;, 1), (x234),
oo oulx )} is given by

y=apt g ol ko gl g g
where the coefficients are determined by the following system of m 4 1 linear equa-
tions.

nay +  fox)a, + (oxPas+- -+ (ox™a, =0y
(oxyay + (oxPa, +  (0x)ay ++ + -+ (0x* ' )a, = Oxy,
(oxDay +  foxMa, +  foxa; + - - - + (ox™ g, = oxly,

(ox™ay + (0x™ gy + (oa® ey +- + ++  (oxMa, = ox™y,

Mote that if m = 1 this system of equations reduces o0

nag + (Zxla, =Z
(Z x)ay + (ExPay = Z xy,,




EXAMPLE 1

Solution
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which has a solution of
oy 0Ox

iy = BOEY, = iuiril[ﬂi ¥) and @ =~ —a—"
noxf—1lox J 0 ,, L 5
i |

Exercise 16 asks vou to show that this formula is equivalent to the matrix fermula for linear
regression that was presented in Section 2.5.
Example [ illustrates the use of regression analysis o find a second-degree polynomial

model.

Least Squares Regression Analysis

The world population in billions for the vears between 1965 and 2000, is shown in Table
10.9. {Source: ULS. Census Bureau)

TABLE 10.2
Year 1965 1970 1975 1980 1985 1990 1995 2000
Population 336 372 410 446 486 528 569 6.08

Find the second-degree least squares regression polvnomial for these data and use the
resulting model to predict the world population for 2005 and 2010,

Begin by letting x = —4 represent 1965, x = —3 represent 1970, and so on. So the
collection of points is given by {(—4, 3.36), (—3, 3.72).(—2. 4.10), (—1,4.46), (0, 4.86),
(1.5.28), (2. 5.69), (3, 6.08)}, which yiclds

n=8, O 5=i8 Oxleﬂ, Oxﬂm-—ﬁi'-h

=] =1 =l
L] L] -
Q*' =452 (Qn=3755  Quxy=-—236 Qx’ = 19086
=} i=l =} =]

So the system of linear equations giving the coefficients of the quadratic model
y=axt+ ax+ oayis
Bag — 4oy + ddax = 37.55
—dg, + 4d4g, — 0da, = —2.36
44&" ! Mﬂ; + 45203 = |86,
Gaussian elimination with pivoting on the matrix
& =4 44 3755
—4 44 —-6d 236
44 —64 452 190.86
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produces
1 —=1.4545 102727 43377
0 | —0.6000  0.3926].
00 | (0045

So by back substitution you find the solution to be
a; = L0045, a; = 0.3953, qa; = 4.8667,
and the regression quadratic is
2005 210 » = 0.0045x + 0.3953x + 4.8667.

Figure 10,1

Given

: Predicted Figure 11l.] comparcs this model with the given poinis. To predict the world population for
points

poinis 2003, let x = 4, obtaining
v = 0.0045(4%) + 0.3953(4) + 4.8667 = 6.52 hillion.
. Similarly, the prediction for 2010 (x = 5) is
3 A v = 0.0045(5%) + 0.3953(5) + 4.8667 = 6.96 billion.

e

EXAMPLE 2  Least Squares Regression Analysis
Find the third-degree least squares regression polynomial
yE=axt+as +ax + 6
for the points
{(0.0). (1.2),(2,3). (3.2), (4. 1). (5. 2). (6. 9}

Solution For this set of points the linear system

nay + (0xjay + (0x7)ay + (0xPay = 0y,
(ox)ay + (oxHa, + (ox¥a: + (0x9ay = oxy,

i I )
+ (oxDa + (oxYa + (ox%a
i ] (] F! i 3

Il

1l

{'n.fz_]ﬂ ox :}r
i i i

U [}

(oxNa, + (0x)a, + (0x5a, + (0xa, = oxly,
becomes
Tay + 2lay + 9lg, + d4la; = 14
2lay + Hay +  4d4lay + 2275, 52

9la, + 44la, + 2275, + 1220la, = 242
44la, + 2275a, + 12,201ay + 67,171a, = 1258,

|
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Using Gaussian climination with pivoting on the matrix

7 21 gl 441 14
21 91 441 2275 52
a1 44] 2275 12,201 242

441 2275 12,201 67,171 125

produces
_ LODOOD 51587 27.6667 1523150  2.8526
“a:_'"m 0.0000 10000 85312 583482 0.6183
' (6,4) 00000 00000  1.0000 97714  0.1286]
9 2.3) 0.0000  0.0000  0.0000 LOo00D  0.1667
< el (5.2}
] 3.0 \ which implies that
2
: (1,2 - a; = L1667, g, = —1.5000, a, =3.6905 a;=—0.0714
(0, 0y 4. 1) So the cubic moedel is
SR y = 0.1667x — 1.5000x + 3.6905x — 0.0714.

Figure 10.2 compares this model with the given points.

Applications of the Gauss-Seidel Method

EXAMPLE 3 An Application to Probability

Figure 10.3 is a diagram of a maze used in a laboratory experiment. The experiment begins

by placing a mouse al one of the ten interior intersections of the marze. Once the mouse

emerges in the outer corridor, it cannot return to the maze. When the mouse 15 at an interior

intersection, its choice of paths is assumed to be random. What is the probability that the
Figure 103 mouse will emerge in the “food corridor™ when it begins at the ith intersection?

Let the probability of winning (getting food) by starting at the ith intersection be repre-
sented by p. Then form a linear equation involving p, and the probabilities associated with
the intersections bordering the ith intersection. For instance, at the first intersection the
mouse has a probability of fof choosing the upper right palhland losing. a probability of 'y
of choosing the upper left path and losing, a probability of rof choosing the |ui~'mr righi-
path (at which point it has a probability of ps of winning), and a probability of jof choos-
ing the lower left path (at which point it has a probability of p: of winning). So

p =0+ +'p +'p.
1 4 4 4 2 4 3

o Ny, | i, . et

Uppdr Upper Ltwer  Lower
right feft eft right
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Using similar reasoning. the other nine probabilitics can be represented by the following

equations.
p=0)+'p +!p +p +
3 50 53 ?J.
p =0+l +lp +lp +
3 i iz 35
p=0+Y +lp +p +
4 ﬁl f;3+,';5+_'E?+
= +
A
= W) + + b +
Pn 3 ip: Sp.‘ ?\pu
p =0+ +ip +'p
T 4 g =4 1%
p=+p +p+p+
¥ 5 3 55 57
p=i+l +lp +lp
3 % 5 5B
p =00+ +!p +'p
w3 § 6 ¥

W

&

an

iy Yo T e T

Rewriting these equations in standard form produces the following system of ten linear

equations in ten variables,

P — B P =4

“PE T kT P =0

—p— P2 T3Py = Ps Ps =0

— P +3p,— ps —-Pr="P =

T PhTPT pahops— p = = P =4

= 1 = Ps+3p, = P~ pp=0

- P taApr— By = ]

— P P T BV P =1

— PP — Pty — P =1

— P — pstdpp =1

The augmented matrix for this system is
4 =1 =1 o 0 0 —-0-0 0 0 6]
=R L =] =] O -0 ¢ 0o 0 O
=] 3 =L =} B0 0 a0
0 =l 0 5 =l L (e | 0 i 0
b =1 =1 =l 6 =1 =g =l 0 0
I | B 0 -l 5 0 0 -=I =1 0
o 0 0 =i o 0 4 = 0 0 |
0 0 0 =1~ g =l 3 =] 0 l
P 0 0 W=l -] B o=l 5 =1 1
RTE VN DO T I it R o 0 -l 4 1
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Using the Gauss-Seide] method with an initial approximationof py = p. = ... =py =0
produces (after 18 iterations) an approximation of

o= 0,090, P2 = 0180
g = 0180, ps = 0.268
ps = 0.333, pe = 10.298
= 0.455, e = 0.522

= 0.522, pio = 0.455,

The structure of the probability problem described in Example 3 is related 10 a technique
called finite element analysis, which is used in many engineering problems.

Note that the matrix developed in Example 3 has mostly zero entries. Such matrices are
called sparse, For solving systems of equations with sparse coefficient matrices, the Jacobi
and Gauss=Seidel methods are much more efficient than Gaussian elimination.

Applications of the Power Method

Section 7.4 introduced the idea of an age transition matrix as a model for population
growth. Recall that this model was developed by grouping the population into n age classes
of equal duration. So for a maximum life span of [ years, the age classes are given by the
following intervals.

Firstuge Secaond g nth.age

clss clasa [*[Fia]
- ————, .

o)y jeait,y
The number of population members in each age class is then represented by the age distri-
bution vector
i Number in first age closs

X3 Number insceond ape cliss

k=5 Number in ath age class
Over a period of L /n years, the probability that a member of the ith age class will survive
to become a member of the (7 + 1)th age class is given by p. where 0 = p, < 1,i= 1, 2,
+« vt — 1. The average number of offspring produced by a member of the rth age class

is given by b, where 0 < b, i = 1,2,. . ..n.  These numbers can be written in matrix
form as follows.
bl h': b] i bn—l bn
P 0 0 v 0 1]
A=l 0 pm 0 ..o p 0
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Multiplying this age transition matrix by the age distribution vector for a given period of
time produces the age distribution vector for the next period of tme. That is,

Ax, =%

In Section 7.4 you saw that the growth pattern for a population is stable 1f the same per-
centage of the total population is in each age class cach year. That is,

Ax; = x4 = Ax,

For populations with many age classes, the solution to this eigenvalue problem can be found

with the power method, as illustrated in Example 4.

EXAMPLE 4 A Population Growth Model

Assume that a population of human females has the following characteristics.

fgpe Clluass
rEn e

0 = ape
10 = age
20 = age
30 = ape
40 = age
50 = age
60 = ape
70 = age
80 = age
90 = age

& A AT R VA

ALA

n

=

10
20
30
40
50
60
70
B0
90
0o

Averoce Namber of Frobahility of
Fimie - Clhiaren SUPVIVINE 1

et Tens Fear Peviod Woxt Ao ETEs
(LO00 0.985
0.174 0.996
0.782 (.994
).263 0,990
0.022 0.975
0.000 0,940
0.000 (L8606
0.000 0.680
0,000 0.361
0,000 0,000

Find a stable age distribution for this population,

Solution The age transition mairix for this population is

0.985

ScCooooo Qoo

]

0.996

0

(= — I — I = — i — ]

]
]

0.994

L= = — i — I~ — ]

0000 0174 0782 0263 0022 0.000 0.000 0.000 0.

0

0

i}
0.990

U
]
]
]
]

000
0 0 ] 0 i
0 0 ] ] 0
] 0 ] ] 0
] 0 ] ] 0
6975 0 ] 0 0
0 0940 0 ] 0
] 0 0866 O 0
] ] 0 0680 O

] 0 0 0 0.361
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To apply the power method with scaling to find an eigenvector for this matrix, use an
initial approximation of x¢ = (1. 1, 1, 1. 1. 1, 1. 1. 1, 1). The following is an approximation
for an eigenvector of 4, with the percentage of each age in the total population:

Pervomtogie i
Eigerrgeion I s far sy
[ 1.000 ] 0<age< 10 15.27
0.925 10 = age < 20 14.13
0.864 20 = age < 30 13.20
0.806 30 < age < 40 1231
x= 0.749 40 = age < 30 11.44
0.686 50 = age < &0 1048
0.605 60 £ age < 70 9.24
0,492 T0 < age < 80 1.51
0.314 80 < age < S0 4.80
| 0106 | 90 = age < 00 1.62

The eigenvalue corresponding to the eigenvector x in Example 4 1s A = 1.065. That is,

10007 [1.0657 C1.0007
0925 | | 0985 0.925
0.864 0.921 0.864
0.806 | | 0.859 0.806
0749 | | 0708 0.749
A=A 6686 | = [ome] =1 oess |
0605 | | 0.645 0.605
0492 | | 0524 0.492
0314 | | 0334 0.314
[ 0.006 | | 0.113 ] 0,106

This means that the population in Example 4 increases by 6.3% every ten years,

REMARK: Should you try duplicating the results of Example 4, you would notice that
the convergence of the power method for this problem is very slow. The reason is that the

dominant cigenvalue of A = 1,065 is only slightly larger in absolute value than the next
largest eigenvalue.




%
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SECTION 104 L) EXERCISES

Applications of Gaussian Elimination with Pivoting

b In Exercises |4, find the second-degree least squares regression
polynomial for the given data. Then graphically compare the model
to the given points.

Lo(=2, 1. (=L oy (0,00, (1, 1. (3.2)
2000,4) 00,2002, —1), (3,00, (4, 1), (5, 4)

3 (=2, 1), {—1. 25 (0, 6), (1. 3}, (2. 00, (3. — 1)
4 (1, 013.02, 10,03, 00, {4, — 1), (5, —4)

ﬁ In Exercises 5-8, find the third-degree least squares regression

polynomial for the given data. Then graphically compare the model
to the given points.

500,00, (1,2),(2,4), (3. 1), (4. 0). (5. 1)

o. (1,1),(2,4).(3,4).(5.1),(6, 2)

T (=3.4), (=1, 11 (0.0),01,2). 2. 5)

8. (—7.2).(=3.00. (1, —1),(2.3).(4.6)
Find the second-degree least squares regression polynomial
for the points

(5.0 (5=2)- 0.0. G ) (R0),

Then use the results to approximate cos {f4), Compare the
approximation with the exact value.

3 10. Find the third-degree least squares regression polynomial for

the points

L= (R =03). 00, §.5). G1).

Then use the result to approximate tan (rr/6). Compare the
approximation with the exact value.

« The number of minutes a scuba diver can stay at a particular
depth without acquiring decompression sickness is shown in
the table. (Source: United States Navy's Standard Air Decom-

pression Tables)

Depith {in feet) 35 40 50 60 70
Fime fin mifmtes) | 310 200 100 il 30
Bepth fin feet) #0 a0 | (0 110

Time fin misutes ) 40 30 25 20

5512

513,

2514,

() Find the least squares regression line for these data,

(b} Find the second-degree least squares regression polyno-
mial for these data,

(c) Sketch the graphs of the models found in parts {a) and (b),

(d) Use the models found in parts {a) and (b) to approximate
the maximum number of minutes a diver should stay at a
depth of 120 feet. { The value given in the Navy's tables is
15 minutes.)

The life expectancy for additional vears of life for ferales in

the United States as of 1998 iz shown in the table. (Source:

LS. Census Burcau)

Crrrent Age 1] 20 30 40
Life Fxpectimer | 706 608 510 414
Crrrens Age k1] 1] 0 i
Life Expecians 320 233 15.6 9.1

{a) Find the second-degree least squares regression polyno-
mial for these data.

{b) Use the result of part (a) to predict the life expeciancy of
a newbormn female and a female of age 100 vears,

Total sales in hillions of dollars of cellular phones in the

Unites "States from 1992 10 1999 arc shown in the table,

(Sowurce: Electronie Market Data Book).

1992 1993 1994 1995 1996 1997 (998

275 278

Yietu 1999

L15 126 128 257 266 281

h‘l 1. al (4]

{a) Find the second degree least squares regression polyno-
mial for the data.

(b} Use the result of part (a) 1o predict the total cellular phone
sales in 2005 and 20110,

(¢} Are your predictions from part (b) realistic™ Explain.

Tuotal new domestic truck umt sules in hundreds of thousands

in the United States from 1993 to 2000 are shown in the

table. (Source: Ward s Auto info bank)

1993 1994 1995 1996 1997 1998 1999 2000

Tear

529 600 606 648 663 T51 792 R(9

Trcks

{a) Find the second degree least squares regression palyno-
mial for the data.




(b} Use the result of part {a) to predict the total new domestic
truck sales in 2005 and 2010,
(2) Are your predictions from part (h) realistic? Explain.

5 15, Find the least squares regression line for the population data
given in Example 1. Then use the model to predict the world
poputation in 2005 and 2010, and compare the results with
the predictions obtained in Example |.

16. Show that the formula for the least squares regression hine

prese m Sectgnl 2 5% equivalent to the formula presented
in thif seqtion. Tifat is, if
4 X,
y= 72, X= -‘,;:[“v_
: . k ﬁ'|]
Fa "

then the matrix equation A = (X780 AT 15 equivalent to

noxy — (oxioy) A
nor? — (oxF okt g P

=

Applications of the Gauss-Seidel Method
2 17. Suppose that the experiment in Example 3 is performed with
the mare shown in Figure 104, Find the probability that the
mouse will emerge in the food corridor when it begins in the
ith intersection.
Figure 10.4

Food

418 Suppose that the experiment in Example 3 15 performed with
the maze shown in Figure 10.5, Find the probability that the
mouse will emerge in the food comdor when it begins in the
ith intersection.

SECTION 10.4  EXERCISES 603

Figure 105
1 2 3 g
4 5 G
7 5 9 7
Food

S 19. A squarc metal plate has a constant temperature on each of its
four boundaries, as shown in Figure 10.6. Use a d » 4 gnid 1o
approximate the temperature distnbution in the interior of the

late; Assame | lhat the temperature at cach interior 15 the
gw:ﬁge of rm al the lour closest [Eﬂ&bﬂﬂl‘lb

points,
Figure 106

'Ehjlﬂ, A rectangular metal plate has a constant temperature on cach
of its four boundaries, as shown in Figure 10.7. Use a 4 x §
grid to approximate the temperature distribution in the interior
of the plate. Assume that the temperature at each interior point
is the average of the temperatures at the four closest neighbor-
ing points.

‘igure 10.7




%
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Applications of the Power Method

In Exercises 21-24, the matrix represents the age transition matrix
for a population. Use the power method with scaling to find a stable
age distribution.

I | :
2. 4= A=
EL n] [& o]
rt 1 rl 2 9
3. 4= L 0 0 M.4=% 0 0
(I [ S

& 25, In Example | of Section 7.4, & laboratory population of rab-

bits is described. The age transition matrix for the population is

0 6 &
4= [ 05 0 ﬁ].
0 05 0

Find a stable age distribution for this population.

26, A population has the following characteristics.

{a) A total of 75% of the population survives its first year, OF
that 75%. 25% survives its sccond year. The maximum life
span is three yvears.

{b) The average number of offspring for each member of the
population is 2 the first year, 4 the second year, and 2 the
third year,

Find a stable age disinbution [or this population: (Sce

Exercise 9, Section 7.4.)
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27. Apply the power method to the matrix
1

1
A=
Lol
diseussed in Chapler 7 (Fibonacei sequence). Use the power
method to approximate the dominant cigenvalue of 4. {The
dominant eigenvalue is A = (1 + v5)/2)
28. Wriring In Example 2 of Section 2.5, the stochastic matrix

070 015 015
020 os0 u.:s]
P=1o10 005 070

represents the transition probabilities for a consumer prefer-
ence model. Use the power method to approximate a domi-
nant eigenvector for this matnx, How does the approximation
relate to the steady-state matnix described m the discussion
following Example 3 'in Scetion 2.57

In Exercise 9 of Section 2.5, a population of 10,000 is
divided into nonsmokers, moderate smokers, and heavy smok-
ers. Lise the power method to approximate a dominant eigen-
vector for this matrix.
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