B. Sc. Physics

Motto

Unlocking the secrets of the universe through the power of science.

Fisix Fest

Vision

Providing a strong foundation in Physics to prepare high quality technocrats

Mission

- To provide high quality in Physics education and equipping students for higher education.
- To develop sensitivity among students to contribute to the betterment of society through knowledge in Physics.

Preamble

The B.Sc. Physics programme at St. Joseph's College of Arts and Science for Women, Hosur (Autonomous), has been designed to provide a strong foundation in fundamental concepts while fostering critical thinking, analytical reasoning, and scientific inquiry. It aims to equip students with theoretical knowledge, experimental skills, and computational techniques essential for understanding and applying physical principles in diverse domains.

Recognizing the interdisciplinary nature and expanding frontiers of Physics, this syllabus incorporates a balanced integration of classical physics, modern developments, and emerging areas of research and technology. Emphasis is placed on conceptual clarity, problem-solving, hands-on laboratory experience, and relevance to real-world applications, including energy, environment, health, and technology.

The structure and content of the syllabus have been framed in alignment with the National Education Policy (NEP-2020) guidelines and learning outcomes-based frameworks to enhance employability, innovation, and higher education readiness. It supports students' intellectual growth, encourages independent thinking, and prepares them for careers in academia, industry, and research.

Nature and Extent of the Programme

The **Bachelor of Science – Physics** (**B.Sc. Physics**) is a foundational undergraduate programme that marks the entry point into the higher education framework in the field of Physics, both in India and globally. As a versatile and industry-relevant degree, B.Sc. Physics equips students with the necessary theoretical knowledge and practical skills to either pursue **immediate employment** or undertake **higher studies** in specialized areas of Physics.

Upon successful completion of the programme, graduates are well-prepared to explore diverse career opportunities in the data analysis, instrumentation, and scientific communication and other digitally-driven domains. They may serve in roles such as **Nuclear Physicist**, **Medical Physicist**, **Materials Scientist**, **Astrophysicist and Telecommunications Engineer** contributing meaningfully to organizational growth and societal advancement.

The curriculum developed under the **Learning Outcomes-based Curriculum Framework** (**LOCF**) incorporates comprehensive and diversified aspects of Physics. It emphasizes a balanced integration of **theoretical concepts, problem-solving skills, programming abilities**, and **professional competencies**. The programme also aims to impart a depth of knowledge that allows students to specialize in various domains of physics, while fostering innovation, critical thinking, and ethical responsibility.

Aim of the Programme

The primary aim of the **B.Sc. Physics undergraduate programme** is to provide students with a solid foundation in the core principles of physics, combining theoretical knowledge with practical, hands-on experience. The program seeks to develop critical thinking, problem-solving, and analytical skills, preparing students to understand and address complex physical phenomena. It fosters scientific curiosity and innovation while promoting interdisciplinary learning.

To achieve this, the programme integrates:

- Scientific Communication and Ethics: Emphasis on developing the ability to communicate scientific ideas effectively, both in writing and orally, while promoting ethical practices in research and scientific work.
- **Hands-On Experience**: Laboratory experiments and project-based learning, encouraging students to conduct research, collect data, and interpret results, enhancing their scientific inquiry skills.
- **Research and Innovation**: Opportunities for students to engage in independent research and explore innovative scientific ideas, fostering a culture of intellectual curiosity and creative thinking.

Duration of the Programme

The B.Sc. Physics programme shall extend over a period of **three academic years** comprising **six semesters**. Each academic year shall consist of **two semesters**:

Odd Semester: June to NovemberEven Semester: December to May

Each semester shall have a minimum of 90 working days, exclusive of examination days.

Eligibility for Admission

A candidate shall be eligible for admission to the B.Sc. Physics programme if she has passed the **Higher Secondary Examination of the Government of Tamil Nadu** or any other equivalent examination recognized by the University, with any one of the following subjects:

- Mathematics
- Mathematics with Computer Science

Credit Requirements and Eligibility for Award of Degree

A candidate shall be eligible for the **award of the B.Sc. PHYSICS degree** only if she has:

- Successfully completed the prescribed **course of study** in a college affiliated to the University for a **minimum duration of three academic years (six semesters)**.
- Passed all prescribed **semester examinations**.
- Earned a minimum of 140 credits as distributed under the following Parts:

Part I – Language

Part II – General English / Advanced English

Part III – Discipline Specific Core, Generic Specific Elective, Discipline Specific Elective, Professional Enhancement Course and Project

Part IV – Skill Enhancement Courses, Non-Major Electives, Internship, Environmental Studies, Digital Literacy, Women Studies and Indian Knowledge System

Part V – Extension Activity

The candidate must also have fulfilled any other requirements as prescribed by the College/University regulations for the award of the degree.

PROGRAMME OUTCOMES (POs)

PO1: Identify, analyze, and solve problems in physics using appropriate theoretical and experimental methods.

PO2: Design and perform Physics experiments, analyze data using appropriate tools, and interpret results with scientific reasoning.

PO3: Use modern scientific tools, software, and techniques necessary for modeling, computation, simulation, and experimentation in physics.

PO4: Communicate effectively on scientific topics with the physics community and with society at large, through reports, presentations, and discussions.

PO5: Understand the importance of professional ethics, environmental sustainability, and responsibility in scientific practices and research.

PO6: Demonstrate knowledge and skills to plan, execute, and manage mini-projects or research activities individually or as part of a team.

PO7: Understand the role of physics in societal development and apply physical principles in addressing real-world problems.

PO8: Understand the impact of physical processes and technologies on the environment and contribute to sustainable development.

PO9: Integrate knowledge from physics with other disciplines such as mathematics, computer science, engineering, and life sciences for innovative problem-solving.

PO10: Apply data science techniques such as statistical analysis, machine learning, and big data tools in analyzing complex physical systems and datasets.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1: Demonstrate a comprehensive understanding of key concepts and laws in classical mechanics, electromagnetism, optics, thermodynamics, quantum mechanics, and nuclear physics.

PSO2: Develop competence in using laboratory instruments, performing experiments, analyzing data, and interpreting physical phenomena through hands-on experience.

PSO3: Integrate physics knowledge with emerging fields such as electronics, nanotechnology, material science, and renewable energy to explore real-world applications.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates will develop a strong foundation in fundamental and applied physics, enabling them to analyze, model, and solve scientific problems using theoretical and experimental approaches.

PEO2: Graduates will gain proficiency in using modern tools, instruments, and software for data analysis, simulation, and experimentation, preparing them for research, innovation, and higher education.

PEO3: Graduates will effectively integrate physics with interdisciplinary knowledge, demonstrate teamwork, and communicate scientific ideas clearly through written and oral means.

MAPPING OF PEO WITH PO AND PSO:

PEO \ Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
PEO1	3	3	2	1	1	2	3	2	3	1	3	3	2
PEO2	1	3	3	1	3	2	1	2	2	3	1	3	3
PEO3	2	1	2	3	3	3	2	3	3	2	2	2	3

3 = Strongly Related, 2 = Moderately Related, 1 = Slightly Related

Course Components and Credit Distribution

The curriculum framework for the B.Sc. Physics programme under the autonomous structure is designed to ensure holistic academic development, skill enhancement, and societal contribution. The credit distribution across the various components is as follows:

	nents		1 300	Sem 1	Com II		Sem	H	Sem	2	V cmc V	y mes	Sem	M	urs	dit
S. No.	Study Components	Part	No. of Hours	Credit	No. of Hours	Total Credit										
1	Language	I	6	3	6	3	6	3	6	3					24	12
2	English	II	6	3	6	3	6	3	6	3					24	12
3	Core Course / DSC	III	9	7	9	7	9	7	9	7	20	15	14	12	70	55
4	Allied / GSE	III	5	4	5	4	5	4	5	4					20	16
5	Elective / DSE	III									8	8	8	8	16	16
6	PEC	III											2	2	2	2
7	Project	III											4	4	4	4
8	SEC	IV	2	2	2	2	2	2	2	2					8	8
9	NME	IV	2	2	2	2									4	4
10	Environmental Studies / IDC	IV					2	2							2	2
11	Digital Literacy/IDC	IV							2	2					2	2
12	Women Studies	IV									2	2			2	2
13	Indian Knowledge System / IDC	IV											2	2	2	2
14	Internship	IV										2				2
15	Extension Activity	V												1		1
	Total		30	21	30	21	30	21	30	21	30	27	30	29	180	140

Details of Course of Study for Parts I-V

PART I – Tamil and Other Languages

Students shall study Tamil or one of the other approved languages (e.g., Hindi or French), as per their choice and subject to availability. The syllabus and prescribed textbooks for these languages shall be periodically updated by the respective Boards of Studies and approved by the Academic Council of the College.

PART II - English

Courses in English aim to improve students' proficiency in language, literature, communication, and critical thinking. The curriculum and instructional materials are prepared by the Board of Studies of English and approved through the academic governance structure.

PART III - Core, Allied, Project and Elective Courses

This part comprises the Discipline Specific Core Courses, Generic Specific Elective, Discipline Specific Elective, Professional Enhancement Course and a Project in the final semester. The

content and structure of these courses are prescribed by the respective Board of Studies in Physics and approved by the Academic Council to align with current academic and industry standards.

PART IV – Value and Skill-Oriented Courses

i. Non-Major Elective (NME):

• Students must choose **Non-Major Elective (NME)** comprising from the options offered by other departments.

ii. Additional Courses under Part IV:

- Skill Enhancement Courses (SEC)
- Environmental Studies
- Women studies
- Indian Knowledge System
- Internship

PART V – Extension Activity

Students shall earn a maximum of 1 credit through participation in Compulsory Extension Services. Every student must enrol in NSS, Red Ribbon Club, Youth Red Cross, Field Work, Outreach Activities or any other Clubs recognized by the College.

Inclusion of Massive Open Online Courses (MOOCs) via SWAYAM and NPTEL

MOOC Courses for Credit Mobility

As part of the credit-based curriculum design and in alignment with the guidelines of higher education regulatory bodies, students are encouraged to enrol in Massive Open Online Courses (MOOCs) offered on SWAYAM or NPTEL platforms. These courses can be opted under Core, Elective, or Soft Skill categories. The student shall be eligible for award of the degree only upon submission of a valid certificate as proof of successful completion of the chosen MOOC course. **Two credits** will be given to candidates who successfully complete the course.

B.Sc., Physics Curriculum Design First Year Semester – I

S. No	Part	Nature the of Course	Course Code	Name of the Course	Hours per Week	Credits	Marks		
					week		CIA	ESE	Total
			25UTAM101	Tamil - I					
			25UFRE101	French - I					
1	ī	Language I	25UHIN101	Hindi - I	6	3	25	75	100
1	1	Language 1	25UKAN101	Kannada - I	U	3	23	73	100
			25UTEL101	Telugu - I					
			25UURD101	Urdu – I					
2	II	English I	25UGEN101	General English I	6	3	25	75	100
2	11	English i	25UAEN101	Advanced English I	O	3	23	13	100
				Properties of Matter		_	25	7.5	100
3		DSC I	25UPH1C01	and Acoustics	6	5	25	75	100
				(Skill Development)					
				Core Practical I					
4	III	DSC I	25UPH1CP1	Properties of Matter	3	2	40	60	100
-		Practical I	2301111011	Experiments					
				(Skill Development)					
5		GSE	25UMA1A02	Allied Mathematics I	5	4	25	75	100
		Allied I	25014111102	(Skill Development)					
			25UPH1SE1	Principles of Physics					
			25011115E1	(Employability)					
6		SEC I		Home Electrical	2	2	25	75	100
	IV		25UPH1SE2	Installation					
				(Employability)					
7		SEC II		Non Major Elective I	2	2	25	75	100
		NME I			_	_			
	Total			30	21	190	510	700	

Semester – II

S. No	Part	Nature of the Course	Course Code	Name of the Course	Hours per	Credits			
					Week		CIA	ESE	Total
			25UTAM202	Tamil - II					
			25UFRE202	French - II					
1	I	Language II	25UHIN202	Hindi - II	6	3	25	75	100
1	1	Language II	25UKAN202	Kannada - II	U	3	23	13	100
			25UTEL202	Telugu - II					
			25UURD202	Urdu - II					
2	П	English II	25UGEN202	General English II	6	3	25	75	100
2	111	English II	25UAEN202	Advanced English II	O	3	23	73	100
				Heat,					
		DSC II	25UPH2C02	Thermodynamics and	6	5	25	75	100
3		DSC II	2501112002	Statistical Physics	O	3	23	75	100
				(Skill Development)					
				Core Practical II					
		DSC II		Heat, Oscillations,	_	_			
4		Practical II	25UPH2CP2	Waves & Sound	3	2	40	60	100
				Experiments					
				(Skill Development)					

5	Ш	GSE Allied II	25UMA2A02	Allied Mathematics II (Skill Development)	3	3	25	75	100
6	111	GSE Allied Practical I	25UMA2AP2	Allied Mathematics Practical I (Skill Development)	2	1	40	60	100
7		SEC III	25UPH2SE1	Instrumentation (Employability)	2	2.	25	75	100
,	IV	SEC III	25UPH2SE2	Hardware skills (Employability)	2	2	23	73	100
8		SEC IV NME II		Non Major Elective II	2	2	25	75	100
	Total				30	21	230	570	800

Second Year Semester – III

S. No	Part	Nature of the Course	Course Code	Name of the Course	Hours per	Credits		Marks	
					Week		CIA	ESE	Total
1	I	Language III	25UTAM303 25UFRE303 25UHIN303 25UKAN303 25UTEL303 25UURD303	Tamil – III French – III Hindi – III Kannada – III Telugu – III Urdu – III	6	3	25	75	100
2	II	English III	25UGEN303 25UAEN303	General English III Advanced English III	6	3	25	75	100
3		DSC III	25UPH3C03	General Mechanics & Classical Mechanics (Skill Development)	6	5	25	75	100
4	III	DSC III Practical III	25UPH3CP3	Core Practical III Electricity Experiments (Skill Development)	3	2	40	60	100
5		GSE Allied III	25UCH3A02	Allied Chemistry for Physical Sciences I (Skill Development)	5	4	25	75	100
6		SEC V	25UPH3SE1	Computational Methods & Programming in C (Skill Development)	2	2	25	75	100
U	IV		25UPH3SE2	Quantitative Aptitude for Competitive Examinations (Skill Development)					
7		IDC I	25UEVS301	EVS	2	2	25	75	100
8				Health and Wellness *	-	-	-	-	-
	Total				30	21	190	510	700

Semester-IV

S.	Part	Nature of	Course Code	Name of the Course	Hours per	Credits		Marks	
No		the Course			Week		CIA	ESE	Total
1	I	Language IV	25UTAM404 25UFRE404 25UHIN404 25UKAN404 25UTEL404 25UURD404	Tamil - IV French - IV Hindi - IV Kannada - IV Telugu - IV Urdu - IV	6	3	25	75	100
2	II	English IV	25UGEN404 25UAEN404	General English IV Advanced English IV	6	3	25	75	100
3		DSC IV	25UPH4C04	Optics (Skill Development)	6	5	25	75	100
4		DSC IV Practical IV	25UPH4CP4	Core Practical IV Light Experiments (Skill Development)	3	2	40	60	100
5	III	GSE Allied IV	25UCH4A04	Allied Chemistry for Physical Sciences II (Skill Development)	3	3	25	75	100
6		GSE Allied Practical II	25UCH4AP2	Chemistry Practical for Physical and Biological Sciences (Skill Development)	2	1	40	60	100
7		SEC VI	25UPH4SE1	Microprocessor 8085 and Its Applications (Employability)	2	2	25	75	100
	IV		25UPH4SE2	Digital Photography (Entrepreneurship)					
8		IDC II	25UDL401	Digital Literacy	2	2	25	75	100
	Total				30	21	230	570	800

Third Year Semester – V

S. No	Part	Nature of the Course Code Name of the Course pe		Hours per Week	Credits		Marks		
							CIA	ESE	Total
1		DSC V	25UPH5C05	Electricity and Magnetism (Skill Development)	5	4	25	75	100
2		DSC VI	25UPH5C06	Solid State Physics (Skill Development)	6	4	25	75	100
3	III	DSC VII	25UPH5C07	Atomic Physics (Skill Development)	6	5	25	75	100
4		DSC VII Practical V	25UPH5CP5	Core Practical V General Experiments (Skill Development)	3	2	40	60	100

			25UPH5E01	Energy Physics (Employability & Entrepreneurship)					
5		DSE I	25UPH5E02	Fibre Optic Communication System (Employability)	4	4	25	75	100
			25UPH5E03	Applied Physics (Employability & Entrepreneurship)					
			25UPH5E04	Digital Electronics (Skill Development)					
6		DSE II	25UPH5E05	Mathematical Physics & Numerical Methods (Skill Development)	4	4	25	75	100
			25UPH5E06	Astrophysics (Skill Development)					
7	IV	IDC III	25UWOS501	Women Studies	2	2	25	75	100
8	1 V	Internship	25UMA5INT	Internship	-	2		-	-
	Total			30	27	190	510	700	

Semester-VI

S.	Part	Nature of	Course Code	Name of the Course	Hours per	Credits	Marks		
No	Tart	the Course	Course Couc	Name of the Course	Week	Credits	CIA	ESE	Total
1		DSC VIII	25UPH6C08	Nuclear Physics (Skill Development)	5	5	25	75	100
2		DSC IX	25UPH6C09	Quantum Mechanics & Relativity (Skill Development)	6	5	25	75	100
3		DSC Practical VI	25UPH6CP6	Core Practical VI Electronics Experiments (Employability)	3	2	40	60	100
	III		25UPH6E01	Nanoscience & Nanotechnology (Industry 4.0)					
4		DSE III	25UPH6E02	Electronic Communication System (Employability)	4	4	25	75	100
			25UPH6E03	Laser & Spectroscopy (Employability)					
5		DSE IV	25UPH6E04	Basic Electronics (Skill Development)	4	4	25	75	100
3		DSEIV	25UPH6E05	Material Science (Employability)					

			25UPH6E06	Mobile Communication (Employability & Entrepreneurship)					
6		PEC	25UPEC601	Essential Aptitude and Logical Thinking	2	2	25	75	100
7	IV	IDC IV	25UIKS601	Indian Knowledge System	2	2	25	75	100
8		Project	25UPH6PRV	Project	4	4	50	50	100
9	V	Extension	25UEXT601	Extension Activity	-	1	-	-	-
			Total		30	29	240	560	800
		G	rand Total		180	140	1270	3230	4500
		Extra Credit	rand Total Mandatory	Extra Credit - Swayam/MOOC/NP TEL Online Course/ Self Study	180	140	1270	3230	4500
		Extra		Swayam/MOOC/NP TEL Online Course/	-		1270	3230	4500

DSC	Discipline Specific Core
GSE	Generic Specific Elective - Allied
DSE	Discipline Specific Elective
NME	Non-Major Elective
IDC	Inter Disciplinary Course
SEC	Skill Enhancement Course
PEC	Professional Efficiency Course

Discipline Specific Elective Courses

Semester	Part	Nature of the Course	Course Code	Name of the Course
			25UPH5E01	Energy Physics (Employability Entrepreneurship)
V	III	DSE I	25UPH5E02	Fibre Optic Communication System (Employability)
			25UPH5E03	Applied Physics (Employability &Entrepreneurship)

			25UPH5E04	Digital Electronics (Skill Development)	
		DSE II	25UPH5E05	Mathematical Physics & Numerical Methods (Skill Development)	
			25UPH5E06	Astrophysics (Skill Development)	
	III	DSE III DSE IV	25UPH6E01	Nanoscience & Nanotechnology (Industry 4.0)	
			25UPH6E02	Electronic Communication System (Employability)	
VI			25UPH6E03	Laser & Spectroscopy (Employability)	
V1			25UPH6E04	Basic Electronics (Skill Development)	
			25UPH6E05	Material Science (Employability)	
			25UPH6E06	Mobile Communication (Employability & Entrepreneurship)	

Skill Enhancement Course

Semester	Nature of the Course	Course Code	Name of the Course
I	SEC I	25UPH1SE1	Principles of Physics (Employability)
1	SEC 1	25UPH1SE2	Home Electrical Installation (Employability)
II	SEC III	25UPH2SE1	Instrumentation (Employability)
11	SEC III	25UPH2SE2	Hardware skills (Employability)
	SEC V	25UPH3SE1	Computational Methods & Programming in C
III		25 01 113521	(Skill Development)
111		25UPH3SE2	Quantitative Aptitude for Competitive
		23 OT 1135L2	Examinations (Skill Development)
		25UPH4SE1	Microprocessor 8085 and Its Applications
IV	SEC VI	2301111021	(Employability)
		25UPH4SE2	Digital Photography (Entrepreneurship)

Non-Major Elective Courses

Subjects offered by the Department of Physics

Semester	Part	Nature of the Course	Course Code	Name of the Course
I	IV	NME I	25UPH1NM1	Physics in Everyday Life (Skill Development)
			25UPH1NM2	Space Science (Employability)

п	IV	NIME II	25UPH2NM3	Renewable Energy sources (Employability)
11	IV	NME II	25UPH2NM4	Essential of Electricity (Employability)

Allied Courses offered to the Department of Physics

Semester	Part	Nature of the Course	Course Code	Name of the Course		
I	III	GSE I	25UMA1A02	Allied Mathematics I (Skill Development)		
П	Ш	GSE II	25UMA2A02	Allied Mathematics II (Skill Development)		
		322	25UMA2AP2	Allied Mathematics Practical I (Skill Development)		
III	III	GSE III	25UCH3A02	Allied Chemistry for Physical Sciences I (Skill Development)		
			25UCH4A04	Allied Chemistry for Physical Sciences II (Skill Development)		
IV	III	GSE IV	25UCH4AP2	Chemistry Practical for Physical and Biological Sciences (Skill Development)		

Allied Courses offered by the Department of Physics

Semester	Part	Nature of the Course	Course Code Name of the Course	
III	III	GSE III	Fundamentals of Physics: Elasticity, 25UPH3A01 Heat, Waves and Electromagnetism (Skill Development)	
			25UPH4A02	Advanced Physics and Electronics (Skill Development)
IV	III GSE IV 25UPH4AP1		25UPH4AP1	Material Properties and Electronics Experiments (Employability)

B.Se	B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards							
Course Code	Course Title	Course Type	Sem	Hours	L	T	P	C
25UPH1C01	PROPERTIES OF MATTER AND ACOUSTICS	DSC THEORY	I	90	6	-	-	5

Study of the properties of matter leads to information which is of practical value to both the physicist and the engineers. It gives us information about the internal forces which act between the constituent parts of the substance. Students who undergo this course are successfully bound to get a better insight and understanding of the subject.

Unit	Course Content	Knowledge Levels	Sessions
Ι	ELASTICITY Hooke's Law – Types of moduli- Stress-Strain Diagram – Elastic Constants** – Poisson's Ratio – Relation between Elastic Constants and Poisson's Ratio – Work done in Stretching and Twisting a wire – Twisting Couple on a Cylinder – Rigidity Modulus by Static Torsion– Torsional Pendulum (With and Without Masses). **SDG 9: Industry, Innovation & Infrastructure	K2, K3	18
П	BENDING OF BEAMS Cantilever— Expression for Bending Moment — Expression for Depression at the Loaded end of the Cantilever— Oscillations of a Cantilever — Expression for Time Period — Determination of Young's Modulus** by Koenig's Method for Non-Uniform Bending— Experiment to determine Young's Modulus using Pin & Microscope by Uniform Bending. **SDG 11: Sustainable Cities & Communities	K3, K4	18
Ш	FLUID DYNAMICS Surface Tension: Definition – Molecular Forces– Excess Pressure over Curved Surface – Application to Spherical and Cylindrical drops and Bubbles – Determination of Surface Tension by Jaegar's Method– Variation of Surface Tension with Temperature. Viscosity: Definition – Streamline and Turbulent Flow** – Rate of Flow of Liquid in a Capillary Tube – Poiseuille's Formula – Corrections – Terminal Velocity and Stoke's Formula– Variation of Viscosity with Temperature. **SDG 6: Clean Water & Sanitation	K2, K3	18
IV	WAVES AND OSCILLATIONS Simple Harmonic Motion (SHM) – Differential Equation of SHM – Graphical Representation of SHM – Composition of Two SHM in a Straight Line and at Right Angles – Lissajous's Figures- Free, Damped, Forced Vibrations – Resonance** and Sharpness of Resonance. Laws of	K1, K3	18

	Transverse Vibration in Strings –Sonometer – Determination		
	of AC Frequency using Sonometer -Determination of		
	Frequency using Melde's String Apparatus		
	**SDG 7: Affordable & Clean Energy		
	ACOUSTICS OF BUILDINGS AND ULTRASONICS		
	Intensity of Sound - Decibel - Loudness of Sound -		
	Reverberation – Sabine's Reverberation Formula – Acoustic		
T 7	Intensity – Factors Affecting the Acoustics of Buildings** .	170 170	10
\mathbf{V}	Ultrasonic Waves: Production of Ultrasonic Waves -	K2, K3	18
	Piezoelectric Crystal Method - Magnetostriction Effect -		
	Application of Ultrasonic Waves.		
	**SDG 3: Good Health & Well-Being		

	CO1: Relate elastic behavior in terms of three moduli of elasticity and working of torsion pendulum.	K2
	CO2: Able to appreciate concept of bending of beams and analyze the expression, quantify and understand nature of materials.	K2
Course Outcomes	CO3: Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface; soap films provide an analogue solution to many engineering problems.	K2
	CO4: Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains	K1, K2
	CO5: Understand the concept of acoustics, importance of constructing buildings with good acoustics.	K2

	Learning Resources					
Text Books	 D.S. Mathur, 2010, Elements of Properties of Matter, S. Chand & Co. BrijLal & N. Subramanyam, 2003, Properties of Matter, S. Chand & Co. D.B. Khanna & R.S. Radi, 1060, Taythank of Sayard. 					
	3. D.R. Khanna & R.S. Bedi, 1969, Textbook of Sound.					
	1.C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers					
	2. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth					
Reference	edition, R. Chand & Co.					
Books	3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-					
	Heinmann India.					
	1 https://www.youtuba.com/wetch?v=CTnDEtkeTEa					
Website	1. https://www.youtube.com/watch?v=GTnPEtksTEc					
	2. https://www.youtube.com/watch?v=uM2HpLBVAkA					
Links	3. https://www.youtube.com/watch?v=DW4rItB20h4					
L – Lecture	T – Tutorial P – Practical C - Credit					

Mapping of CO's with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	2	3	3	3	2	2	2	2	3	2	2
CO2	3	2	2	3	2	1	2	1	2	2	3	2	2
CO3	3	3	2	1	2	1	2	2	2	2	3	3	3
CO4	3	3	3	2	3	2	2	3	2	2	3	3	2
CO5	2	2	1	2	3	1	3	3	2	3	2	2	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. S. Saranya	Verified By HOD: Mrs. T. Sivapriya
Checked By CDC: Dr. B. K. Jaleesha	Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D.,

Assistant Professor Department of Physics, Periyar University Salem 11. Delley Bull of my

Dr. M. Jose, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head (PG), PG & Research Department of Physics, Sacred Heart College (Autonomous), Tirupattur Dr. Pavithra, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head, PG & Research Department of Physics, Marudhar Kesari Jain College for Women (Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E.,

Managing Director, Pranav Solution, Krishnagiri. **Ms. D. Vijaya Lakshmi M.Sc.,** Chief Operator, Tata Electronics,

Hosur

B.9	Sc. Physics LOCF – CBCS w	vith effect from 20	25 - 2020	6 Onward	ls			
Course Code	Course Title	Course Type	Sem	Hours	L	T	P	C
25UPH1CP1	PROPERTIES OF MATTER EXPERIMENTS	DSC PRACTICAL	I	45	-	-	3	2

Apply various physics concepts to understand Properties of Matter, set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results.

S. No	List of Experiments (Any 7)	Knowledge levels
	**SDG 4 – Quality Education	
1	Determination of rigidity modulus with & without masses using Torsional pendulum.	K4
2	Determination of Young's modulus by Uniform bending – Pin and Microscope.	K4
3	Verification of Hook's law by stretching of wire method.	K2
4	Determination of Young's modulus by non-uniform bending – scale & telescope.	K4
5	Determination of Young's modulus by cantilever – load depression graph.	К3
6	Determination of Young's modulus by Koenig's method in Non-Uniform Bending method	K5
7	Determination of rigidity modulus by static torsion.	К3
8	Determination of surface tension & interfacial surface tension by drop weight method.	K4
9	Determination of 'g' using compound pendulum	К3

	CO1: Demonstrate understanding of the mechanical properties of materials through experimental techniques.	K2
	CO2: Apply physical principles and mathematical equations to determine physical constants like modulus, g, and viscosity.	К3
Course Outcomes	CO3: Analyze data from experiments and interpret results with accuracy and scientific reasoning.	K4
	CO4: Use appropriate measuring instruments (e.g., telescope, micrometer, stopwatch) to perform and record experiments.	К3
	CO5: Communicate experimental observations and conclusions effectively through records, graphs, and calculations.	K5

Mapping of CO's with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	1	2	1	2	1	1	1	3	3	2
CO2	3	3	2	1	1	1	2	1	2	2	3	3	2
CO3	3	3	2	2	1	2	2	1	2	2	3	3	2
CO4	2	3	3	2	1	2	1	1	2	2	2	3	2
CO5	1	2	2	3	2	2	1	1	2	2	2	2	2

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. S. Saranya	Verified By HOD: Mrs. T. Sivapriya
Checked By CDC: Dr. B. K. Jaleesha	Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D.,

Assistant Professor Department of Physics, Periyar University Salem 11.

Dr. M. Jose, M.Sc., M.Phil., Ph.D., Associate Professor and Head (PG),

PG & Research Department of Physics, Sacred Heart College (Autonomous),

Tirupattur

Dr. Pavithra, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head, PG & Research Department of Physics,

Marudhar Kesari Jain College for Women (Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E.,

Managing Director, Pranav Solution,

Krishnagiri.

Ms. D. Vijaya Lakshmi M.Sc., Chief Operator, Tata Electronics,

Hosur

Sc. Physics LOCF – CBCS w	ith effect from 20	25 - 2026	Onward	ls			
Course Title	Course Type	Sem	Hours	L	T	P	C
PRINCIPLES OF PHYSICS	SEC THEORY	I	30	2	-	-	2
	Course Title	Course Title Course Type PRINCIPLES OF SEC	Course Title Course Type Sem PRINCIPLES OF SEC	Course Title Course Type Sem Hours PRINCIPLES OF SEC I 30	PRINCIPLES OF SEC 1 30 2	Course Title Course Type Sem Hours L T PRINCIPLES OF SEC I 30 2 -	Course Title Course Type Sem Hours L T P PRINCIPLES OF SEC I 30 2 -

To help students get an overview of Physics before learning their core courses. To serve as a bridge between the school curriculum and the degree programme.

Unit	Course Content	Knowledge Levels	Sessions
I	Vectors, Scalars –Examples for Scalars and Vectors from Physical Quantities – Addition, Subtraction of Vectors – Resolution and Resultant of Vectors – Units and Dimensions**– Standard Physics Constants. **SDG 4: Quality Education	K1, K2	6
п	Different Types of Forces**-Gravitational, Electrostatic, Magnetic, Electromagnetic, Nuclear -Mechanical Forces like, Centripetal, Centrifugal, Friction, Tension, Cohesive, Adhesive Forces. **SDG 9: Industry, Innovation & Infrastructure	K2, K2	6
Ш	Different forms of Energy— Conservation Laws of Momentum, Energy — Types of Collisions —Angular Momentum— Alternate Energy Sources**— Real Life Examples. **SDG 7: Affordable & Clean Energy	K2, K3	6
IV	Types of Motion**- Linear, Projectile, Circular, Angular, Simple Harmonic Motions - Satellite Motion - Banking of a Curved Roads - Stream Line and Turbulent Motions - Wave Motion - Comparison of Light and Sound Waves - Free, Forced, Damped Oscillations. **SDG 11: Sustainable Cities & Communities	K2, K3	6
V	Surface Tension – Shape of Liquid Drop – Angle of Contact – Viscosity – Lubricants – Capillary Flow – Diffusion – Real Life Examples– Properties and Types of Materials in Daily use** - Conductors, Insulators – Thermal and Electric. **SDG 12: Responsible Consumption & Production	K2, K3	6

	CO1: Apply concept of vectors to understand concepts of Physics and solve problems	К3
Course	CO2: Appreciate different forces present in Nature while learning about phenomena related to these different forces.	K2
Outcomes	CO3: Quantify energy in different process and relate momentum, velocity and energy	К3
	CO4: Differentiate different types of motions they would encounter in various courses and understand their basis	К3

	Learning Resources
Text Books	 D.S. Mathur, 2010, Elements of Properties of Matter, S. Chand & Co BrijLal & N. Subrahmanyam, 2003, Properties of Matter, S. Chand & Co.
Reference Books	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S. Chand & Co.
Website Links	 https://www.youtube.com/watch?v=4ELxJ53mMHE https://www.youtube.com/watch?v=uEnUG_1TYxc https://www.youtube.com/watch?v=jhKejoBqiYc https://www.youtube.com/watch?v=CqjxAYZ13QA
L – Lecture	T – Tutorial P – Practical C - Credit

Mapping of CO's with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	1	2	4	2	1	3	2	1
CO2	3	2	2	1	2	3	2	2	2	2	3	2	2
CO3	3	2	2	1	2	1	2	2	2	2	3	2	2
CO4	3	1	1	2	2	3	2	1	2	1	3	1	1
CO5	2	2	2	3	2	3	2	2	2	3	2	2	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. S. Saranya	Verified By HOD: Mrs. T. Sivapriya
Charled By CDC Dy P. V. Jalasaha	Approved By: Dr. J. Caroline Rose

Checked By CDC: Dr. B. K. Jaleesha

Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D.,

Assistant Professor
Department of Physics,
Periyar University Salem 11.

18110.00/m/m

Dr. M. Jose, M.Sc., M.Phil., Ph.D., Associate Professor and Head (PG), PG & Research Department of Physics, Sacred Heart College (Autonomous),

Tirupattur

Dr. Pavithra, M.Sc., M.Phil., Ph.D., Associate Professor and Head,

PG & Research Department of Physics, Marudhar Kesari Jain College for Women (Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E.,
Managing Director, Pranav Solution,

Ms. D. Vijaya Lakshmi M.Sc., Chief Operator, Tata Electronics, Hosur

Krishnagiri.

B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards										
Course Code	Course Title	Course Type	Sem	Hours	L	T	P	C		
25UPH1SE2	HOME ELECTRICAL INSTALLATION	SEC THEORY	I	30	2	•	-	2		

The students will get knowledge on electrical instruments, installations and domestic wiring techniques with safety precautions and servicing.

Unit	Course Content	Knowledge Levels	Sessions
I	SIMPLE ELECTRICAL CIRCUITS Charge, Current, Potential Difference, Resistance – Simple Electrical Circuits – DC Ammeter, Voltmeter, Ohmmeter – Ohm's Law – Difference between DC And AC** – Advantages of AC Over DC **SDG 9: Industry, Innovation & Infrastructure	K1, K2	6
II	TRANSMISSION OF ELECTRICITY Production and Transmission of Electricity – Concept of Power Grid** – Series and Parallel Connections – Technicalities of Junctions and Loops in Circuits – Transmission Losses (Qualitative) – Roles of Step-Up and Step-Down Transformers. **SDG 7: Affordable & Clean Energy	K2, K2	6
Ш	ELECTRICAL WIRING Different Types of Switches – Installation of Two-Way Switch - Role of Sockets, Plugs, Sockets - Installation of Meters – Basic Switch Board** – Electrical Bell – Indicator – Fixing of Tube Lights and Fans **SDG 11: Sustainable Cities & Communities	K2, K3	6
IV	POWER RATING AND POWER DELIVERED Conversion of Electrical Energy in to Different Forms – Work Done by Electrical Energy – Power Rating of Electrical Appliances – Energy Consumption** – Electrical Energy	K2, K3	6

	Unit in KWH – Calculation of EB Bill – Joule"s Heating – Useful Energy and Energy Loss – Single and Three Phase Connections – Measures to Save Electrical Energy – Energy Audit**. **SDG 12: Responsible Consumption & Production		
V	SAFETY MEASURES Insulation for Wires — Colour Specification for Mains, Return and Earth — Understanding of Fuse and Circuit Breakers — Types of Fuses: Kit-Kat, HRC, Cartridge, MCB, ELCB — Purpose of Earth Line — Lighting Arrestors — Short Circuiting and Over Loading — Electrical Safety — Tips to avoid Electrical Shock — First Aid for Electrical Shock — Fire Safety for Electric Current **SDG 3: Good Health & Well-Being	K2, K3	6

	CO1: Define and explain basic electrical quantities (charge, current, voltage), Ohm's law, and usage of electrical measuring instruments (galvanometer, ammeter, voltmeter, multimeter).	K1
	CO2: Describe and analyze the working, construction, types, and EMF equation of transformers, including voltage and current ratios and applications.	K2
Course Outcomes	CO3: Differentiate and apply knowledge of AC and DC systems, single and three-phase connections, transformer losses, wiring methods, and electrical protection techniques.	K4
	CO4: Explain the working principles and demonstrate understanding of appliances such as bulbs, fans, refrigerators, mixers, UPS, etc.	К3
	CO5:Classify and evaluate different electrical heating and welding methods; identify related occupational hazards and safety measures.	K4

Learning Resources							
Text Books	 P.L. Soni, P.V. Gupta and V.S. Bhatnagar, A text book in electric power, Dhanpat rai sons, E.O. Taylor, Utilization of electrical energy, Orient Longman 						
Reference Books	 H. Partas, Arts and Science of utilization of electrical energy Dhanpat Rai& Sons, New Delhi B.L. Teraja and A.K. Teraja, A Textbook of Electrical Technology, S. Chand & Co. New Delhi (2006) 						
Website Links	 https://www.youtube.com/watch?v=5lR5nf3gR8c https://www.youtube.com/watch?v=2q09UeqZhpM https://www.youtube.com/watch?v=CWulQ1ZSE3c&t=1s 						
L – Lecture	T – Tutorial P – Practical C - Credit						

Mapping of COs with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	1	1	1	1	1	2	1	3	3	2
CO2	3	2	3	1	1	2	2	1	2	1	3	3	3
CO3	3	2	3	2	3	2	3	2	2	1	3	3	3
CO4	2	1	2	2	2	2	2	2	2	1	2	2	3
CO5	3	2	2	1	3	2	3	3	2	1	3	2	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. S. Saranya	Verified By HOD: Mrs. T. Sivapriya
Checked By CDC: Dr. B. K. Jaleesha	Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D.,

Assistant Professor Department of Physics, Periyar University Salem 11. Phley of rolling

Dr. M. Jose, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head (PG), PG & Research Department of Physics, Sacred Heart College (Autonomous),

Tirupattur

Dr. Pavithra, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head, PG & Research Department of Physics, Marudhar Kesari Jain College for Women (Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E.,

Managing Director, Pranav Solution, Krishnagiri. Ms. D. Vijaya Lakshmi M.Sc.,

Vijagalalahmi 9/10/20x

Chief Operator, Tata Electronics,

Hosur

B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards								
Course Code	Course Title	Course Type	Sem	Hours	L	T	P	C
25UPH2C02	HEAT, THERMODYNAMICS AND STATISTICAL PHYSICS	DSC THEORY	II	90	6	-	-	5

The course focuses to understand a basic in conversion of temperature in Celsius, Kelvin and Fahrenheit scales. Practical exhibition and explanation of transmission of heat in good and bad conductor. Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

Unit	Course Content	Knowledge Levels	Sessions
I	HEAT: Specific Heat Capacity – Specific Heat Capacity of Gases CP & CV– Meyer's Relation – Joly's Method for Determination of CV – Regnault's Method for Determination of CP- Low Temperature Physics: Joule-Kelvin Effect – Porous Plug Experiment – Joule-Thomson Effect** –Boyle temperature – Temperature of Inversion – Liquefaction of Gas by Linde's Process** – Adiabatic Demagnetisation **SDG 9: Industry, Innovation and Infrastructure	K1, K2	18
П	THERMODYNAMICS-I: Introduction —Thermodynamic system— Zeroth Law of Thermodynamics and Statement of First Law of Thermodynamics— Statement of Second Law of Thermodynamics— Introduction of Reversible and Irreversible process— Heat Engine— Efficiency of Heat Engine— Carnot's Engine**— Carnot's cycle- Construction, Working and Efficiency of Petrol Engine and Diesel Engine**— Comparison of Engines. **SDG 7: Affordable and Clean Energy	K2, K3	18
Ш	THERMODYNAMICS-II: Third Law of Thermodynamics –Entropy of an Ideal Gas – Entropy Change in Reversible and Irreversible Processes – T-S Diagram –Thermodynamic potentials – Internal energy – Helmholtz function – Gibbs function– Enthalpy–Maxwell's Thermodynamical Relations**- Clausius-Clapeyron's Equation (First Latent Heat Equation) **SDG 13: Climate Action	K2, K3	18
IV	HEAT TRANSFER: Modes of Heat Transfer: Conduction, Convection and Radiation. Conduction: Thermal Conductivity – Determination of Thermal Conductivity of a Good Conductor by Forbe's Method – Determination Of thermal Conductivity of a Bad Conductor by Lee's Disc Method. Radiation: Black Body Radiation (Ferry's	К3	18

	Method) - Distribution of Energy in Black Body Radiation -		
	Wien's Law and Rayleigh Jean's Law -Planck's Law of		
	Radiation - Stefan's Law** - Deduction of Newton's Law of		
	Cooling from Stefan's Law.		
	**SDG 11: Sustainable Cities and Communities		
	STATISTICAL MECHANICS:		
	Definition of Phase-Space - Micro and Macro States -		
	Ensembles - Different types of Ensembles - Classical and		
X 7	Quantum Statistics - Derivation for Maxwell- Boltzmann	17.2	10
V	Statistics** -Expression for Distribution Function – Derivation	K3	18
	for Bose Einstein Statistics- Derivation for Fermi- Dirac		
	Statistics – Comparison of three statistics.		
	**SDG 4: Quality Education		

	CO1: Acquires knowledge on how to distinguish between temperature and heat. Introduce him/her to the field of thermometry and explain practical measurements of high temperature as well as low temperature physics. Student identifies the relationship between heat capacity, specific heat capacity.	K2, K3
	CO2: Derive the efficiency of Carnot's engine. Discuss the implications of the laws of Thermodynamics in diesel and petrol engines	К3
	CO3: Able to analyze performance of thermodynamic systems viz	
Course Outcomes	efficiency by problems. Gets an insight into thermodynamic properties like enthalpy, entropy	К3
	CO4: Study the process of thermal conductivity and apply it to good and	
	bad conductors. Quantify different parameters related to heat, relate them with various physical parameters and analyse them	К3
	CO5: Interpret classical statistics concepts such as phase space,	
	ensemble, Maxwell-Boltzmann distribution law. Develop the statistical	
	interpretation of Bose-Einstein and Fermi-Dirac. Apply to quantum particles such as photon and electron.	K2, K3

	Learning Resources
	1. Brijlal &N. Subramaniam, 2000, Heat and Thermodynamics, S. Chand& Co.
	2. Narayanamoorthy&KrishnaRao, 1969, Heat, Triveni Publishers, Chennai.
Text Books	3. Brijlal and N. Subramanyam, 2001, Waves and Oscillations, Vikas Publishing House,
	New Delhi.
	4. R. Murugeshan & Kiruthiga Sivaprasath, Thermal Physics, S. Chand& Co.
D e	1. J.B.Rajam&C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S. Chand& Co.
Reference	Ltd.
Books	2. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons.
	3. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co.
Wah site	1. https://youtu.be/M_5KYncYNyc
Website	2. https://www.youtube.com/watch?v=w6VNUYIUV3s&t=16s
Links	3. https://www.youtube.com/watch?v=0wn0R9qWbiQ
L – Lecture	T – Tutorial P – Practical C - Credit

Mapping of COs with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	1	2	1	2	2	2	1	3	2	2
CO2	3	1	2	1	2	1	2	2	2	2	3	1	2
CO3	3	1	2	1	2	2	2	2	2	3	3	2	2
CO4	3	2	3	1	2	1	2	2	2	2	3	3	2
CO5	3	1	2	2	2	1	3	2	3	3	3	1	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. T. Sivapriya	Verified By HOD: Mrs. T. Sivapriya
Checked By CDC: Dr. B. K. Jaleesha	Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D.,

Assistant Professor Department of Physics, Periyar University Salem 11.

Dr. M. Jose, M.Sc., M.Phil., Ph.D., Associate Professor and Head (PG),

PG & Research Department of Physics, Sacred Heart College (Autonomous),

Tirupattur

Dr. Pavithra, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head, PG & Research Department of Physics, Marudhar Kesari Jain College for Women

(Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E.,

Managing Director, Pranav Solution, Krishnagiri.

Ms. D. Vijaya Lakshmi M.Sc., Chief Operator, Tata Electronics, Hosur

B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards								
Course Code	Course Title	Course Type	Sem	Hours	L	Т	P	C
25UPH2CP2	HEAT, OSCILLATIONS, WAVES & SOUND EXPERIMENTS	DSC PRACTICAL	II	45	-	-	3	2

Apply their knowledge gained about the concept of heat and sound waves, resonance, calculate frequency of ac mains set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results.

S.No	List of Experiments (Any 7)	Knowledge levels					
	SDG 4 – Quality Education						
1	Determination of thermal conductivity of bad conductor by Lee's disc method.	K2					
2	To verify the laws of transverse vibration using Melde's apparatus.	K4					
3	Determination of specific heat by cooling – graphical method.	K5					
4	Determination of specific heat capacity of solid.	К3					
5	Determination of thermal conductivity of rubber tube.	К3					
6	Velocity of sound through a wire using Sonometer.	K4					
7	Determination of frequency of an electrically maintained tuning fork	K4					
8	To verify the laws of transverse vibration using sonometer.	K4					
9	To compare the mass per unit length of two strings using Melde's apparatus.	K5					

	CO1: Understand the physical principles behind heat, sound, and radiation experiments.	K2
	CO2: Apply experimental techniques to measure physical constants like thermal conductivity, specific heat, etc.	К3
Course Outcomes	CO3: Analyze vibrational and acoustic phenomena using instruments like the sonometer and Melde's apparatus.	K4
	CO4: Evaluate experimental data using graphical methods and compare it with theoretical values.	K6
	CO5: Design and conduct physics experiments to verify laws and determine material properties.	K6

Mapping of CO's with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1	3	2	1	1	3	2	2
CO2	3	3	3	2	2	2	2	2	2	2	3	3	2
CO3	3	3	3	2	2	2	2	1	2	2	3	3	2
CO4	3	3	3	2	1	2	1	1	2	3	3	3	2
CO5	3	3	3	2	2	3	2	2	3	3	3	3	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Verified By HOD: Mrs. T. Sivapriya
Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D.,

Assistant Professor Department of Physics, Periyar University Salem 11.

Dr. M. Jose, M.Sc., M.Phil., Ph.D., Associate Professor and Head (PG), PG & Research Department of Physics, Sacred Heart College (Autonomous),

Tirupattur

Dr. Pavithra, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head, PG & Research Department of Physics, Marudhar Kesari Jain College for Women

(Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E., Managing Director, Pranav

Solution, Krishnagiri.

Ms. D. Vijaya Lakshmi M.Sc., Chief Operator, Tata Electronics,

Hosur

B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards								
Course Code	Course Title	Course Type	Sem	Hours	L	T	P	C
25UPH2SE1	INSTRUMENTATION	SEC THEORY	II	30	2	-	-	2

To study the instruments with its principle and observe the method of their functioning. To provide a good foundation in measurements. To inspire interest in the knowledge of concepts regarding measurements.

Unit	Course Content	Knowledge Levels	Sessions
I	PERFORMANCE CHARACTERISTICS OF AN INSTRUMENTATION SYSTEM: Introduction – System configuration – Problem Analysis – Basic Characteristics of measuring devices – Calibration - Generalized measurement** **SDG 9: Industry, Innovation, and Infrastructure	K1, K2	6
II	SENSORS AND TRANSDUCERS: Basic principles of sensors – pressure sensor (Strain Gauge) – IR sensor - Characteristics of transducers – variable resistance transducer –variable capacitance transducer – Voltage and current transducer**. **SDG 7: Affordable and Clean Energy	K2, K3	6
Ш	DIGITAL INSTRUMENTS: Introduction – Digital Multimeter – Digital panel meter – Digital frequency meter – Digital measurement of time – Universal counter – Digital tachometer – Digital PH meter**. **SDG 6: Clean Water and Sanitation	K2, K3	6
IV	CLINICAL INSTRUMENTATION: Anesthesia Machine- recording fetal heart movements and blood circulations using Doppler Ultrasonic Method –blood cell counter – B.P Measurement – direct and indirect method. Types of Gas Analyses ** - Oxygen, NO2 and H2S types – area radiation Dosimeter. **SDG 4: Quality Education	К3	6
V	MEDICAL INSTRUMENTATION: ECG - EEG - Lead systems and recording methods -typical waveforms - X-ray machine - Digital Stethoscope - Computer tomography - MRI - Ultrasonography** - Thermography - Pacemakers - Ventilators - Dialyzers. **SDG 3: Good Health and Well-being	К3	6

	CO1 : Understand the performance characteristics and dynamic behavior of instrumentation systems, including calibration and system response analysis.	K1, K2
	CO2: Explain the principles and applications of various sensors and transducers such as strain gauges, IR sensors, and variable resistance/capacitance devices.	K2, K3
	CO3: Apply knowledge of digital measuring instruments like digital	
Course	multimeters, frequency counters, and digital pH meters for effective	K2, K3
Outcomes	electronic measurements.	
	CO4: Analyze the working and application of gas analyzers and	
	pollution monitoring instruments including radiation dosimeters and air	K3
	quality sensors.	
	CO5 : Evaluate the principles and functionalities of medical diagnostic	К3
	instruments like ECG, MRI, CT, and ventilators, and understand their	KS
	importance in healthcare instrumentation.	

	Learning Resources
	Doebelin, Measurement Systems-Applications and Design, Tata
	McGraw Hill, (1990)
Tout Dealer	2. CS Rangan, GR Sharma, V.S.V. Mani, Instrumentation Devices
Text Books	and Systems, Second Edition, Tata McGraw Hill, (2011)
	3. R.S. Khandpur, Handbook of Analytical Instruments, Tata McGraw Hill
	4. (2003).
	1. D. Patranabis, Sensors and Transducers, Prentice Hallof India, (1999)
	2. M. Arumugam, Bio-medical Instrumentation, Anuradha Agencies, (2002)
Reference	3. John G. Webster, Medical Instrumentation: Application and Design,
Books	John Wiley &Sons Inc (2009)
	4. John P. Bentley Principles of Measurement Systems, Third Edition,
	5. Pearson Education, (2000)
	1. https://www.electronicsforu.com/technology-trends/learn-electronics/ir-
****	led- infrared-sensor-basics
Website Links	2. https://www.youtube.com/watch?app=desktop&v=MfCCy1SRF9A&t=85s
LIIIKS	3. https://www.youtube.com/watch?v=AEq1wNIcWJM
	4. https://www.youtube.com/watch?v=UTudEz0U_fo
L – Lecture	T – Tutorial P – Practical C - Credit

Mapping of COs with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2	2	2	2	1	3	2	2
CO2	3	2	3	2	2	2	2	2	2	1	3	2	2
CO3	3	3	3	2	2	2	2	2	2	2	3	3	3
CO4	3	3	3	3	3	2	3	3	2	2	3	3	3
CO5	3	3	3	2	3	2	3	3	3	2	3	3	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. T. Sivapriya	Verified By HOD: Mrs. T. Sivapriya
Checked By CDC: Dr. B. K. Jaleesha	Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D.,

Assistant Professor Department of Physics, Periyar University Salem 11. 11,10,000

Dr. M. Jose, M.Sc., M.Phil., Ph.D., Associate Professor and Head (PG), PG & Research Department of Physics,

Sacred Heart College (Autonomous), Tirupattur Dr. Pavithra, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head, PG & Research Department of Physics, Marudhar Kesari Jain College for Women (Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E.,

Managing Director, Pranav Solution,

Krishnagiri.

Ms. D. Vijaya Lakshmi M.Sc., Chief

Operator, Tata Electronics, Hosur

]	B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards									
Course Code	Course Title	Course Type	Sem	Hours	L	Т	P	C		
25UPH2SE2	HARDWARE SKILLS	SEC THEORY	П	30	2	-	-	2		

To provide students with fundamental knowledge of personal computer hardware components, their functions, and servicing techniques. The course aims to develop practical skills in installation, configuration, maintenance, and troubleshooting of computer systems and peripherals.

Unit	Course Content	Knowledge Levels	Sessions
	PC - OVERVIEW		
	Personal computer system – Block diagram ** – PG system		
	unit – layout – lower model – motherboard daughter		
T	boards** - SMPS - Front panel controls - display unit -		_
Ι	keyboard – rear side connectors and their uses	K1, K2	6
	**SDG 4: Quality Education		
	HARDWARE		
	Basics – ROM BIOS – organization – services – hardware –		
	BIOS – DOS Diskette basics – tracks sectors – types – 3-		
II	5"capacity – disk parts – disk formatting – data recording	K2, K3	6
	floppy disk drive** – capacity – installation and		
	configuration – adding and removing disk drives.		
	**SDG 12: Responsible Consumption and Production		
	KEYBOARD AND MEMORY DEVICES		
	CDROM Types – Audio, Video, DVD, Data CDS,		
	Reading and writing mechanism Storage capacity** -		
III	CD Drive Mechanisms Installation - PC Keyboard	K2, K3	6
	operation, the scan code concept – keyboards signals		
	interface logic advanced KBD functions - Ctrl-Alt-Del,		
	pause, print screen, Alt+numeric pad.		
	**SDG 9: Industry, Innovation, and Infrastructure		
	INPUT AND OUTPUT DEVICES		
IV	The mouse – signals, connection, operation installation –	К3	6

	scanner types. The print controller block diagram and		
	description – ports** . The serial port – parallel port –		
	game port - signals and connector specifications block		
	diagram SMPS – operation, output voltage levels.		
	**SDG 11: Sustainable Cities and Communities		
	INSTALLATION AND SERVICING		
	Configuring the motherboard - all in one		
	motherboard** – jumper sets – identifying the connectors		
V	and cables – adding memory modules – upgrading the CPU	К3	6
	- BIOS setup 60 program** - various setup options -		
	configuring the IDE card.		
	**SDG 8: Decent Work and Economic Growth		

	CO1: Understand the architecture of a personal computer system including motherboard layout and internal hardware components.	K1, K2			
	CO2: Identify and describe the role of storage devices such as floppy disks, hard disks, and their configurations.	K2, K3			
Course Outcomes					
	CO4: Analyze the functions of input/output devices including printers, monitors, ports, and SMPS.	К3			
	CO5: Apply knowledge in configuring, installing, and servicing motherboards, BIOS, and diagnostic tools.	К3			

	Learning Resources					
	1. Computer hardware, K L James, Kindle Edition.					
	2. Essential Computer Hardware Second edition, Kavin Wilson, Elluminet					
Text Books	Press, (2019)					
	3. Introduction to Microprocessors, Software, Hardware and programming-lance					
	A					
	4. Leventhal, -prentice-Hall.of India (1979)					
	1. Microprocessors and Interfacing, programming mid-Hardware-second					
Dofomonoo	edition, Douglas.V. Hall, Tata Mc Graw Hill (1999).					
Reference	2. Computer Architecture: A Quantitative Approach, John L. Hennessy,					
Books	David A. Patterson.					
	3. Computer Hardware Troubleshooting Guide.					
Website	1. https://www.youtube.com/watch?v=oEORcCQ62nQ&t=5s					
	2. https://www.youtube.com/watch?v=b2pd3Y6aBag					
Links	3. https://www.youtube.com/watch?v=d86ws7mQYIg&t=664s					
L – Lecture	T – Tutorial P – Practical C - Credit					

Mapping of COs with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	2	1	2	1	3	2	2
CO2	3	2	3	2	2	2	2	1	2	1	3	2	3
CO3	2	2	3	1	2	2	1	1	2	1	2	3	2
CO4	3	2	3	2	3	2	2	2	3	2	3	3	3
CO5	3	3	3	2	3	3	2	2	3	2	3	3	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. T. Sivapriya	Verified By HOD: Mrs. T. Sivapriya
Checked By CDC: Dr. B. K. Jaleesha	Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D., Assistant Professor Department of Physic

Professor Department of Physics, Periyar University Salem 11. Phylograpian

Dr. M. Jose, M.Sc., M.Phil., Ph.D.,Associate Professor and Head (PG),
PG & Research Department of Physics,
Sacred Heart College (Autonomous),

Tirupattur

Dr. Pavithra, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head, PG & Research Department of Physics, Marudhar Kesari Jain College for Women (Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E., Managing Director, Pranav Solution, Krishnagiri.

V yayalalahmi 9 10 20 x Ms. D. Vijaya Lakshmi M.Sc.,

Chief Operator, Tata Electronics,
Hosur

B.S	B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards								
Course Code	Course Title	Course Type	Sem	Hours	L	T	P	C	
25UPH1NM1	PHYSICS IN EVERYDAY LIFE	SEC/NME THEORY	I	30	2	-	•	2	

To know where all physics principles have been put to use in daily life and appreciate the concepts with a better understanding also to know about Indian scientists who have made significant contributions to Physics.

Unit	Course Content	Knowledge Levels	Sessions
I	MECHANICAL OBJECTS Spring Scales – Bouncing Balls –Roller Coasters – Bicycles –Rockets and Space Travel**. **SDG 4: Quality Education	K1, K2, K3	6
п	OPTICAL INSTRUMENTS AND LASER Vision Corrective Lenses** - Polaroid Glasses - UV Protective Glass - Polaroid Camera - Colour Photography - Holography and Laser. **SDG 3: Good Health & Well-Being	K1, K2, K3	6
Ш	PHYSICS OF HOME APPLIANCES Bulb – Fan – Hair Drier – Television – Air Conditioners** – Microwave Ovens – Vacuum Cleaners **SDG 12: Responsible Consumption & Production	K1, K2, K3	6
IV	SOLAR ENERGY Solar Constant – General Applications of Solar Energy – Solar Water Heaters – Solar Photo – Voltaic Cells** – General Applications of Solar Cells. **SDG 13: Climate Action	K1, K2, K3	6
V	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS: C.V. Raman, Homi Jehangir Bhabha, Vikram Sarabhai, Subrahmanyan Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam** and their contribution to science and technology. **SDG 17: Partnerships for the Goals	K1, K2	6

	CO1: Explain the scientific principles behind mechanical objects and analyze their applications in education and technology.	K1
Course	CO 2: Demonstrate understanding of optical instruments and lasers, and evaluate their role in healthcare, vision correction, and well-being	K2
Outcomes	CO3: Apply physics concepts to the working of home appliances and promote responsible and sustainable energy usage.	K2
	CO4: Analyze solar energy systems, including solar water heaters and photovoltaic cells, and apply them to develop sustainable energy solutions.	K1

	Learning Resources								
Text Book	1. The Physics in our Daily Lives, Umme Ammara, Gugu cool Publishing, Hyderabad, 2019.								
Reference Book	1. For the love of physics, Walter Lawin, Free Press, New York, 2011.								
Website Links	1.https://www.youtube.com/watch?v=GY7oiZ19oeU 2.https://www.youtube.com/watch?v=Hu-JL2J6ncE 3.https://www.youtube.com/shorts/wxGGhdOL3I8								
L – Lecture	T – Tutorial P – Practical C - Credit								

Mapping of CO's with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	1	1	-	-	2	1	1	-	3	1	1
CO2	3	2	1	1	2	-	2	2	2	1	3	2	2
CO3	3	2	2	1	3	1	3	3	2	1	2	2	3
CO4	2	1	-	2	2	1	2	1	1	-	2	1	1
CO5	3	2	2	2	2	2	3	2	3	1	3	3	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Verified By HOD: Mrs. T. Sivapriya
Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D.,

Assistant Professor Department of Physics, Periyar University Salem 11. 1.1.202/121

Dr. M. Jose, M.Sc., M.Phil., Ph.D.,Associate Professor and Head (PG),
PG & Research Department of Physics,
Sacred Heart College (Autonomous),

Tirupattur

Dr. Pavithra, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head, PG & Research Department of Physics, Marudhar Kesari Jain College for

Women (Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E., Managing Director, Pranav Solution, Krishnagiri. **Ms. D. Vijaya Lakshmi M.Sc.,** Chief Operator, Tata Electronics,

Hosur

B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards								
Course Code	Course Title	Course Type	Sem	Hours	L	T	P	C
25UPH1NM2	SPACE SCIENCE	SEC/NME THEORY	I	30	2	-	•	2

To develop fundamental knowledge of the structure and composition of the universe, including planets, Earth's layers, atmospheric phenomena, and celestial objects such as comets, meteors, asteroids, the Sun, Moon, stars, and galaxies.

Unit	Course Content	Knowledge Levels	Sessions
I	Universe: Planets - interior planets - exterior planets - crust, mantle and core of the earth - different - region of earth's atmosphere ** - rotation of the earth - magnetosphere - Van Allen belts - Aurora. **SDG 13: Climate Action	K1, K2	6
п	Comets, Meteors, Asteroids: Composition and structure of comets - periodic comets - salient features of asteroids, meteors and its use** **SDG 9: Industry, Innovation & Infrastructure	K1, K2	6
Ш	Sun: Structure of photosphere, chromosphere, corona – sunspots** – solar flares - solar prominences - solar piages - satellites of planets -structure, phases and their features of moon. **SDG 3: Good Health & Well-Being	K1, K2	6
IV	Stars: Constellations - binary stars - their origin and types star clusters -globular clusters - types of variable stars - types of galaxies**. **SDG 17: Partnerships for the Goals	K1, K2	6
V	Origin of Universe: Big bang theory** - pulsating theory - steady state theory - composition of universe expansion **SDG 4: Quality Education	K1, K2	6

	CO1: Recall the classification of planets, internal layers of the Earth, and different regions of the Earth's atmosphere.	K1					
	CO2: Explain the phenomena related to Earth's rotation, magnetosphere, Van Allen belts, and aurora.	K2					
Course Outcomes	CO3: Describe the structure and physical features of comets, meteors, asteroids, and their significance in space science.						
Outcomes	CO4: Understand the structure and characteristics of the Sun and the Moon, including their layers, activities (like solar flares), and lunar phases.	K2					
	CO5: Identify different types of stars, galaxies, and theories related to the origin and expansion of the universe.	K1					

Learning Resources							
	1. K.D. Abyankar, Astrophysics of the solar system, University press,						
Text	India (1999)						
Books	2. BaidyanathBasu, Sudhindra Nath Biswas And Tanuka Chattopadhyay, An						
	3. Introduction ToAstrophysics, Prentice Hall OfIndia, New Delhi (2010)						
Reference	1. Prof. P.Devadas, The fascinatingAstronomy, Devadas Telescopies, Chennai						
Books	2. R.P. Singhal, Elements of Space Physics, PHI, (2009)						
	1. https://www.youtube.com/watch?v=TZaMh5H4zdw						
	2. https://www.youtube.com/watch?v=Pmajp_gN00w						
Website	3. https://www.youtube.com/watch?v=a2RsH_2-Oko						
Links	4. https://www.youtube.com/watch?v=k9xGkRx1pQc						
	5. https://www.youtube.com/watch?v=tBVUTFPate0						
L – Lecture	T – Tutorial P – Practical C - Credit						

Mapping of CO's with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	3	1	3	2	2	1	1	1	3	1	1
CO2	3	2	1	3	3	2	2	2	1	2	3	2	2
CO3	3	2	2	1	3	1	2	2	2	2	3	2	2
CO4	3	2	2	3	3	1	2	1	2	1	3	2	2
CO5	3	1	3	1	1	3	3	2	2	1	3	1	2

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. S. Saranya	Verified By HOD: Mrs. T. Sivapriya
Checked By CDC: Dr. B. K. Jaleesha	Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D.,

Assistant Professor Department of Physics, Periyar University Salem 11. Dr. M. Loso M. So. M. Phil. Ph. D.

Dr. M. Jose, M.Sc., M.Phil., Ph.D., Associate Professor and Head (PG), PG & Research Department of Physics, Sacred Heart College (Autonomous), Tirupattur $\label{eq:continuous} \textbf{Dr. Pavithra, M.Sc., M.Phil., Ph.D.,}$

Associate Professor and Head, PG & Research Department of Physics, Marudhar Kesari Jain College for Women (Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E., Managing Director, Pranav Solution, Krishnagiri. Ms. D. Vijaya Lakshmi M.Sc., Chief Operator, Tata Electronics,

Hosur

I	B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards								
Course Code	Course Title	Course Type	Sem	Hours	L	T	P	C	
25UPH2NM3	RENEWABLE ENERGY SOURCES	SEC / NME THEORY	II	30	2		1	2	

To make the students understand the basic principles of real-time applications of nonconventional energy sources.

Unit	Course Content	Knowledge Levels	Sessions
I	SOLAR ENERGY: Solar energy Introduction— Solar radiation measurements— angstrom compensation Pyrheliometer— Solar water heater— Subcomponents of solar water heater— Solar Cooker -Solar greenhouse - types of greenhouses** **SDG 7: Affordable and Clean Energy	K1, K2	6
II	WIND ENERGY: Power in the wind - Types of wind energy systems** — Horizontal axis wind Turbine — Vertical axis wind Turbine. **SDG 9: Industry, Innovation, and Infrastructure	K1, K2	6
III	OCEAN ENERGY: Tidal Energy – Ocean Thermal Energy Conversion (OTEC)** – Closed Cycle OTEC system – Open Cycle OTEC System. **SDG 14: Life Below Water	K2	6
IV	ENERGY FROM BIOMASS: Biomass feedstock – water material – energy crops – important properties of biomass – conversion of biomass to gaseous fuels **– anaerobic digestion – thermal gasification. **SDG 12: Responsible Consumption and Production	K2	6
V	GEOTHERMAL ENERGY Introduction – Estimates of Geothermal power – Nature of Geothermal fields – Geothermal sources** – Advantages and Disadvantages of geothermal energy – Applications of geothermal energy. **SDG 13: Climate Action	K2	6

	CO1 : Understand the basic principles and importance of renewable energy sources like solar, wind, ocean, biomass, and geothermal energy.	K2
	CO2 : Illustrate solar energy systems by explaining solar radiation measurements, and describe the working of solar water heaters, cookers, and greenhouses.	К3
Course Outcomes	CO3 : Differentiate between horizontal and vertical axis wind turbines and evaluate the performance of various wind energy systems.	К3
	CO4 : Explain tidal energy and OTEC systems and compare the operations of open and closed cycle OTEC systems.	К3
	CO5 : Examine the types, properties, and conversion methods of biomass and geothermal energy sources and assess their applications.	K2

Learning Resources							
	1. Sukhatme S.P, Solar Energy, Wiley publications, 1975, 1st edition.						
To A Double	2. Rai. G.D, Non-Conventional Sources of Energy, Khanna Publishers,						
Text Books	2009, 1st edition.						
	3. Rai. G.D, Solar Energy Utilization, Khanna Publishers, 1987, 1st edition.						
	1. Yogi. D Goswami, Frank Kieth and Jan F. Kredler, Principles of						
Reference	Solar Engineering, Tailor & Francis, 2003, 1st edition.						
Books	2. H. C. Jain, Non-Conventional Sources of Energy, Sterling						
	Publishers,1986.						
	3. M. P. Agarwal, Solar Energy, S. Chand & Co. Ltd., New Delhi, 1982						
***	1. https://www.youtube.com/watch?v=KGnauw2Ckys						
Website Links	2. https://www.youtube.com/watch?v=qSWm_nprfqE						
Links	3. https://www.youtube.com/watch?v=81K84gY414c						
L – Lecture	T – Tutorial P – Practical C - Credit						

Mapping of COs with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	2	3	3	1	3	3	2	3	1	2	3	3	3
CO2	3	2	2	3	2	1	1	2	2	2	3	2	3
CO3	3	2	3	3	2	3	2	2	2	1	2	2	3
CO4	2	2	2	1	2	1	2	3	1	1	2	1	3
CO5	3	2	3	1	3	2	3	3	2	1	3	2	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. T. Sivapriya	Verified By HOD: Mrs. T. Sivapriya
Checked By CDC: Dr.B.K. Jaleesha	Approved By: Dr. J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D., Assistant Professor Department of Physics, Periyar University Salem 11.

Dr. M. Jose, M.Sc., M.Phil., Ph.D., Associate Professor and Head (PG), PG & Research Department of Physics, Sacred Heart College (Autonomous), Tirupattur Dr. Pavithra, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,
PG & Research Department of Physics,
Marudhar Kesari Jain College for Women
(Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E., Managing Director, Pranav Solution, Krishnagiri.

Ms. D. Vijaya Lakshmi M.Sc., Chief Operator, Tata Electronics, Hosur

Vijagolalahmi 9/10/2025

B.Sc. Physics LOCF – CBCS with effect from 2025 - 2026 Onwards									
Course Code	Course Title Course Type Sem Hours L T								
25UPH2NM4	ESSENTIAL OF	SEC / NME	TT	30	2			2	
250111211114	ELECTRICITY	THEORY	11	30	4	-	-	_	

To understand the basic concepts of electrostatics, electric circuits, and energy sources. To apply knowledge of electrical laws, resistance, and circuit elements to analyze simple electric circuits and energy systems.

Unit	Course Content	Knowledge Levels	Sessions
I	Electrification by friction - two kinds of electricity - capacitor -principle of condenser - types of condensers** - fixed condenser -variable condenser. **SDG 4: Quality Education	6	
II	Condenser boxes - electrolytic condenser - guard ring - condenser -condenser in series - condensers in parallel**. **SDG 8: Decent Work and Economic Growth	K2, K2	6
III	Electric field - potential - Ohm's law - electrical energy and power** -resistance - types of resistance - fixed resistance - variable resistance. **SDG 8: Decent Work and Economic Growth	K1, K3	6
IV	Colour codes - resistance in series - resistance in parallel - Kirchoff's law - application to Wheatstone's network** **SDG 17: Partnerships for the Goals	K2, K3	6
v	Primary cell - Daniel, Lechlanche, Dry cell - Secondary cell - Lead acid, Nickel (Principle only) - Cadmium cell** - rechargeable cell. **SDG 12: Responsible Consumption and Production	K1, K2	6

	CO1: Recall the fundamental concepts of electrification, capacitors, electric field, and resistance.									
	CO2: Explain the working principles of capacitors, types of cells, Ohm's law, and Kirchhoff's laws.									
Course Outcomes	CO3: Apply electrical principles to analyze circuits involving resistances, condensers, and energy sources.									
	CO4: Distinguish between different types of cells, resistors, and condensers for practical applications.									
	CO5: Evaluate the performance and design considerations of complex circuits using Kirchhoff's laws and circuit combinations.									

	Learning Resources
Text Books	 Brijlal and Subramaniam, Electricity and Magnetism, S. Chand & Co, New Delhi (2016) R. Murugeshan, Electricity and Magnetism, S. Chand & Co, New Delhi (2016)
Reference Books	 1.D. N. Vasudeva, Electricity and Magnetism, S. Chand & Co, New Delhi (2016) 2. K. K. Tewari, Electricity and Magnetism, S. Chand & Co, New Delhi (2016)
Website Links	1.https://www.youtube.com/watch?v=5lR5nf3gR8c 2.https://www.youtube.com/watch?v=ZDoyIghUI44 3.https://www.youtube.com/watch?v=kYNy_bx4TBA&t=13s
L – Lecture	T – Tutorial P – Practical C - Credit

Mapping of COs with PO's and PSO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	2	1	1	2	1	1	1	2	3	1	1
CO2	3	2	2	1	2	2	2	1	2	1	3	2	2
CO3	3	3	3	2	2	1	2	2	3	2	3	3	2
CO4	2	2	2	1	1	1	2	1	2	1	2	2	3
CO5	3	3	3	2	2	2	2	2	3	2	3	3	3

(Correlation: 3 – High, 2 – Medium, 1 – Low)

Course Designed By: Mrs. T. Sivapriya	Verified By HOD: Mrs. T. Sivapriya
Checked By CDC: Dr.B.K. Jaleesha	Approved By: Dr.J. Caroline Rose Principal

Dr. Kalyana Sundar, M.Sc., M.Phil., Ph.D., Assistant
Professor Department of
Physics, Periyar University

Salem 11

Dr.M. Jose, M.Sc., M.Phil., Ph.D., Associate Professor and Head (PG), PG & Research Department of Physics, Sacred Heart College (Autonomous), Tirupattur

Dr. Pavithra, M.Sc., M.Phil., Ph.D., Associate Professor and Head, PG & Research Department of Physics, Marudhar Kesari Jain College for Women (Autonomous), Vaniyambadi.

Mr. R. Elavarasan, M.E., Managing Director, Pranav Solution, Krishnagiri.

Ms. D. Vijaya Lakshmi M.Sc., Chief Operator, Tata Electronics, Hosur